Abstract

A measurement of the absolute photon yield of characteristic carbon K radiation produced by direct electron bombardment of a target is described. The carbon K emission is produced by a simple and economical source. The radiation is detected with a commercially available proportional counter, using both commercially available windows and thinner windows made at this laboratory. A method for determining gas absorption efficiency of the counter and transmission of the counter window is described. The pulse height distributions obtained from the proportional counter vary in shape with target voltage indicating the presence of a bremsstrahlung continuum as well as characteristic K radiation. The continuum contribution is subtracted from the total counting rate to obtain the photon yield of characteristic K radiation as a function of target voltage. The results of this determination are used in the calibration of a grazing incidence grating spectrometer at 44 Å.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
    [CrossRef]
  2. D. H. Tomboulian, D. E. Bedo, J. Appl. Phys. 29, 804 (1958).
    [CrossRef]
  3. L. G. Parratt, Rev. Sci. Instr. 30, 297 (1959).
    [CrossRef]
  4. R. M. Dolby, Brit. J. Appl. Phys. 11, 64 (1960).
    [CrossRef]
  5. A. J. Campbell, Proc. Roy. Soc. (London) 274A, 319 (1963).
  6. A. P. Lukirskii, M. A. Rumsh, L. S. Smirnov, Opt. i Spektroskopiya 9, 505 (1960); Opt. Spectry. 9, 262 (1960).
  7. W. E. Behring, W. M. Neupert, W. A. Nichols, J. Opt. Soc. Am. 52, 597 (1962).
  8. M. Siegbahn, Proc. Phys. Soc. 45, 689 (1933).
    [CrossRef]

1963

A. J. Campbell, Proc. Roy. Soc. (London) 274A, 319 (1963).

1962

W. E. Behring, W. M. Neupert, W. A. Nichols, J. Opt. Soc. Am. 52, 597 (1962).

1960

A. P. Lukirskii, M. A. Rumsh, L. S. Smirnov, Opt. i Spektroskopiya 9, 505 (1960); Opt. Spectry. 9, 262 (1960).

R. M. Dolby, Brit. J. Appl. Phys. 11, 64 (1960).
[CrossRef]

1959

L. G. Parratt, Rev. Sci. Instr. 30, 297 (1959).
[CrossRef]

1958

D. H. Tomboulian, D. E. Bedo, J. Appl. Phys. 29, 804 (1958).
[CrossRef]

1956

D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
[CrossRef]

1933

M. Siegbahn, Proc. Phys. Soc. 45, 689 (1933).
[CrossRef]

Bedo, D. E.

D. H. Tomboulian, D. E. Bedo, J. Appl. Phys. 29, 804 (1958).
[CrossRef]

Behring, W. E.

W. E. Behring, W. M. Neupert, W. A. Nichols, J. Opt. Soc. Am. 52, 597 (1962).

Campbell, A. J.

A. J. Campbell, Proc. Roy. Soc. (London) 274A, 319 (1963).

Dolby, R. M.

R. M. Dolby, Brit. J. Appl. Phys. 11, 64 (1960).
[CrossRef]

Hartman, P. L.

D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
[CrossRef]

Lukirskii, A. P.

A. P. Lukirskii, M. A. Rumsh, L. S. Smirnov, Opt. i Spektroskopiya 9, 505 (1960); Opt. Spectry. 9, 262 (1960).

Neupert, W. M.

W. E. Behring, W. M. Neupert, W. A. Nichols, J. Opt. Soc. Am. 52, 597 (1962).

Nichols, W. A.

W. E. Behring, W. M. Neupert, W. A. Nichols, J. Opt. Soc. Am. 52, 597 (1962).

Parratt, L. G.

L. G. Parratt, Rev. Sci. Instr. 30, 297 (1959).
[CrossRef]

Rumsh, M. A.

A. P. Lukirskii, M. A. Rumsh, L. S. Smirnov, Opt. i Spektroskopiya 9, 505 (1960); Opt. Spectry. 9, 262 (1960).

Siegbahn, M.

M. Siegbahn, Proc. Phys. Soc. 45, 689 (1933).
[CrossRef]

Smirnov, L. S.

A. P. Lukirskii, M. A. Rumsh, L. S. Smirnov, Opt. i Spektroskopiya 9, 505 (1960); Opt. Spectry. 9, 262 (1960).

Tomboulian, D. H.

D. H. Tomboulian, D. E. Bedo, J. Appl. Phys. 29, 804 (1958).
[CrossRef]

D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
[CrossRef]

Brit. J. Appl. Phys.

R. M. Dolby, Brit. J. Appl. Phys. 11, 64 (1960).
[CrossRef]

J. Appl. Phys.

D. H. Tomboulian, D. E. Bedo, J. Appl. Phys. 29, 804 (1958).
[CrossRef]

J. Opt. Soc. Am.

W. E. Behring, W. M. Neupert, W. A. Nichols, J. Opt. Soc. Am. 52, 597 (1962).

Opt. i Spektroskopiya

A. P. Lukirskii, M. A. Rumsh, L. S. Smirnov, Opt. i Spektroskopiya 9, 505 (1960); Opt. Spectry. 9, 262 (1960).

Phys. Rev.

D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
[CrossRef]

Proc. Phys. Soc.

M. Siegbahn, Proc. Phys. Soc. 45, 689 (1933).
[CrossRef]

Proc. Roy. Soc. (London)

A. J. Campbell, Proc. Roy. Soc. (London) 274A, 319 (1963).

Rev. Sci. Instr.

L. G. Parratt, Rev. Sci. Instr. 30, 297 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of apparatus used to determine the absolute photon yield of carbon K radiation (44 Å).

Fig. 2
Fig. 2

X-ray source showing the mounting plate, anode, and filament.

Fig. 3
Fig. 3

Counter gas absorption efficiency as a function of counter pressure for constant intensity of radiation.

Fig. 4
Fig. 4

Pulse height distribution curves for various target voltages with constant beam current using an aluminum–Mylar window.

Fig. 5
Fig. 5

Pulse height distribution curves for various target voltages with constant beam current using a cellulose nitrate window.

Fig. 6
Fig. 6

Carbon K yields: ×, Dolby,4 φ ~ 33°, θ = 90°; Δ, Campbell,5 φ = θ = 45°; ·, present work φ = 45°, θ = 90°.

Fig. 7
Fig. 7

First-order carbon K emission band as observed with a grazing incidence spectrometer using an x-ray target voltage of 1500 V and a beam current of 1.00 mA.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F ( λ 0 ) = λ 1 λ 2 ( λ ) I ( λ ) S ( λ , λ 0 ) d λ ,
F = λ 1 - Δ λ λ 2 + Δ λ λ 1 λ 2 I ( λ ) S ( λ , λ 0 ) d λ d λ 0 ,
λ S ( λ , λ 0 ) d λ = λ 0 S ( λ , λ 0 ) d λ 0 = constant = Δ λ ,
F = λ 1 λ 2 I ( λ ) d λ λ 1 - Δ λ λ 2 + Δ λ S ( λ , λ 0 ) d λ 0 .
= F / Δ λ λ 1 λ 2 I ( λ ) d λ .
I ( λ ) = ω φ ( λ ) ,
η = Δ λ / r 1 r 2 F [ φ ( λ ) d λ ] .

Metrics