Abstract

The requirements on light sources for double resonance and level crossing spectroscopy are reviewed. A modern version of the Cario–Löchte–Holtgreven flow lamp is described and its performance for a number of elements is compared with that of sealed-off electrodeless discharge lamps and Schüler-type hollow cathode sources. None of these sources is useful under all circumstances. The electrodeless lamp is particularly effective in the case of the group IIb intercombination lines. The high atomic density available in the flow lamp makes it useful for partially forbidden resonance lines for a number of chemical species including highly reactive metals, such as Ca. The hollow cathode lamp is well suited to the fully allowed resonance lines of a wide range of elements including highly refractory metals.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. McDermott, R. Novick, Phys. Rev. 131, 707 (1963).
    [CrossRef]
  2. F. S. Tomkins, M. Fred, J. Opt. Soc. Am. 47, 1087 (1957).
    [CrossRef]
  3. R. J. Hull, H. H. Stroke, J. Opt. Soc. Am. 51, 1203 (1961).
    [CrossRef]
  4. H. Kleiman, S. P. Davis, J. Opt. Soc. Am. 53, 822 (1963).
    [CrossRef]
  5. J. Simpson, private communication.
  6. F. D. Colegrove, L. D. Schearer, G. K. Walters, Phys. Rev. 132, 2561 (1963).
    [CrossRef]
  7. W. F. Meggers, F. O. Westfall, J. Res. Natl. Bur. Std. 44, 447 (1950).
    [CrossRef]
  8. E. Jacobsen, G. R. Harrison, J. Opt. Soc. Am. 39, 1054 (1949).
  9. S. C. Brown, Basic Data of Plasma Physics (Wiley, London, 1959), pp. 142–155.
  10. A. Landman, R. Novick, Phys. Rev. 134, A56 (1964); F. Bryon, M. McDermott, R. Novick, B. Perry, E. Saloman, Phys. Rev. 134, A47 (1964).
    [CrossRef]
  11. F. S. Tomkins, M. Fred, private communication. For details of construction, see also ref. 2.
  12. W. E. Bell, A. L. Bloom, J. Lynch, Rev. Sci. Instr. 32, 688 (1961).
    [CrossRef]
  13. W. G. Penney, Phys. Rev. 39, 467 (1932).
    [CrossRef]
  14. A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge Univ. Press, London, 1934), pp. 25–28.
  15. J. G. King, J. R. Zacharias, Advances in Electronics and Electron Physics (Academic, New York, 1956), Vol. VIII, pp. 19–21.
  16. S. Dushman, J. M. Lafferty, Scientific Foundations of Vacuum Technique (Wiley, New York, 1961).
  17. S. Tolansky, High Resolution Spectroscopy (Methuen and Co., Ltd., London, 1947).
  18. A similar lamp has been described by G. zu Putlitz, Ann. Physik 11, 248 (1963).
    [CrossRef]
  19. G. Gehlhoff, Ber. Deut. Physik. Ges. 13, 271 (1911).

1964

A. Landman, R. Novick, Phys. Rev. 134, A56 (1964); F. Bryon, M. McDermott, R. Novick, B. Perry, E. Saloman, Phys. Rev. 134, A47 (1964).
[CrossRef]

1963

M. N. McDermott, R. Novick, Phys. Rev. 131, 707 (1963).
[CrossRef]

H. Kleiman, S. P. Davis, J. Opt. Soc. Am. 53, 822 (1963).
[CrossRef]

F. D. Colegrove, L. D. Schearer, G. K. Walters, Phys. Rev. 132, 2561 (1963).
[CrossRef]

A similar lamp has been described by G. zu Putlitz, Ann. Physik 11, 248 (1963).
[CrossRef]

1961

R. J. Hull, H. H. Stroke, J. Opt. Soc. Am. 51, 1203 (1961).
[CrossRef]

W. E. Bell, A. L. Bloom, J. Lynch, Rev. Sci. Instr. 32, 688 (1961).
[CrossRef]

1957

1950

W. F. Meggers, F. O. Westfall, J. Res. Natl. Bur. Std. 44, 447 (1950).
[CrossRef]

1949

E. Jacobsen, G. R. Harrison, J. Opt. Soc. Am. 39, 1054 (1949).

1932

W. G. Penney, Phys. Rev. 39, 467 (1932).
[CrossRef]

1911

G. Gehlhoff, Ber. Deut. Physik. Ges. 13, 271 (1911).

Bell, W. E.

W. E. Bell, A. L. Bloom, J. Lynch, Rev. Sci. Instr. 32, 688 (1961).
[CrossRef]

Bloom, A. L.

W. E. Bell, A. L. Bloom, J. Lynch, Rev. Sci. Instr. 32, 688 (1961).
[CrossRef]

Brown, S. C.

S. C. Brown, Basic Data of Plasma Physics (Wiley, London, 1959), pp. 142–155.

Colegrove, F. D.

F. D. Colegrove, L. D. Schearer, G. K. Walters, Phys. Rev. 132, 2561 (1963).
[CrossRef]

Davis, S. P.

Dushman, S.

S. Dushman, J. M. Lafferty, Scientific Foundations of Vacuum Technique (Wiley, New York, 1961).

Fred, M.

F. S. Tomkins, M. Fred, J. Opt. Soc. Am. 47, 1087 (1957).
[CrossRef]

F. S. Tomkins, M. Fred, private communication. For details of construction, see also ref. 2.

Gehlhoff, G.

G. Gehlhoff, Ber. Deut. Physik. Ges. 13, 271 (1911).

Harrison, G. R.

E. Jacobsen, G. R. Harrison, J. Opt. Soc. Am. 39, 1054 (1949).

Hull, R. J.

Jacobsen, E.

E. Jacobsen, G. R. Harrison, J. Opt. Soc. Am. 39, 1054 (1949).

King, J. G.

J. G. King, J. R. Zacharias, Advances in Electronics and Electron Physics (Academic, New York, 1956), Vol. VIII, pp. 19–21.

Kleiman, H.

Lafferty, J. M.

S. Dushman, J. M. Lafferty, Scientific Foundations of Vacuum Technique (Wiley, New York, 1961).

Landman, A.

A. Landman, R. Novick, Phys. Rev. 134, A56 (1964); F. Bryon, M. McDermott, R. Novick, B. Perry, E. Saloman, Phys. Rev. 134, A47 (1964).
[CrossRef]

Lynch, J.

W. E. Bell, A. L. Bloom, J. Lynch, Rev. Sci. Instr. 32, 688 (1961).
[CrossRef]

McDermott, M. N.

M. N. McDermott, R. Novick, Phys. Rev. 131, 707 (1963).
[CrossRef]

Meggers, W. F.

W. F. Meggers, F. O. Westfall, J. Res. Natl. Bur. Std. 44, 447 (1950).
[CrossRef]

Mitchell, A. C. G.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge Univ. Press, London, 1934), pp. 25–28.

Novick, R.

A. Landman, R. Novick, Phys. Rev. 134, A56 (1964); F. Bryon, M. McDermott, R. Novick, B. Perry, E. Saloman, Phys. Rev. 134, A47 (1964).
[CrossRef]

M. N. McDermott, R. Novick, Phys. Rev. 131, 707 (1963).
[CrossRef]

Penney, W. G.

W. G. Penney, Phys. Rev. 39, 467 (1932).
[CrossRef]

Schearer, L. D.

F. D. Colegrove, L. D. Schearer, G. K. Walters, Phys. Rev. 132, 2561 (1963).
[CrossRef]

Simpson, J.

J. Simpson, private communication.

Stroke, H. H.

Tolansky, S.

S. Tolansky, High Resolution Spectroscopy (Methuen and Co., Ltd., London, 1947).

Tomkins, F. S.

F. S. Tomkins, M. Fred, J. Opt. Soc. Am. 47, 1087 (1957).
[CrossRef]

F. S. Tomkins, M. Fred, private communication. For details of construction, see also ref. 2.

Walters, G. K.

F. D. Colegrove, L. D. Schearer, G. K. Walters, Phys. Rev. 132, 2561 (1963).
[CrossRef]

Westfall, F. O.

W. F. Meggers, F. O. Westfall, J. Res. Natl. Bur. Std. 44, 447 (1950).
[CrossRef]

Zacharias, J. R.

J. G. King, J. R. Zacharias, Advances in Electronics and Electron Physics (Academic, New York, 1956), Vol. VIII, pp. 19–21.

Zemansky, M. W.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge Univ. Press, London, 1934), pp. 25–28.

zu Putlitz, G.

A similar lamp has been described by G. zu Putlitz, Ann. Physik 11, 248 (1963).
[CrossRef]

Ann. Physik

A similar lamp has been described by G. zu Putlitz, Ann. Physik 11, 248 (1963).
[CrossRef]

Ber. Deut. Physik. Ges.

G. Gehlhoff, Ber. Deut. Physik. Ges. 13, 271 (1911).

J. Opt. Soc. Am.

J. Res. Natl. Bur. Std.

W. F. Meggers, F. O. Westfall, J. Res. Natl. Bur. Std. 44, 447 (1950).
[CrossRef]

Phys. Rev.

A. Landman, R. Novick, Phys. Rev. 134, A56 (1964); F. Bryon, M. McDermott, R. Novick, B. Perry, E. Saloman, Phys. Rev. 134, A47 (1964).
[CrossRef]

W. G. Penney, Phys. Rev. 39, 467 (1932).
[CrossRef]

M. N. McDermott, R. Novick, Phys. Rev. 131, 707 (1963).
[CrossRef]

F. D. Colegrove, L. D. Schearer, G. K. Walters, Phys. Rev. 132, 2561 (1963).
[CrossRef]

Rev. Sci. Instr.

W. E. Bell, A. L. Bloom, J. Lynch, Rev. Sci. Instr. 32, 688 (1961).
[CrossRef]

Other

F. S. Tomkins, M. Fred, private communication. For details of construction, see also ref. 2.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge Univ. Press, London, 1934), pp. 25–28.

J. G. King, J. R. Zacharias, Advances in Electronics and Electron Physics (Academic, New York, 1956), Vol. VIII, pp. 19–21.

S. Dushman, J. M. Lafferty, Scientific Foundations of Vacuum Technique (Wiley, New York, 1961).

S. Tolansky, High Resolution Spectroscopy (Methuen and Co., Ltd., London, 1947).

S. C. Brown, Basic Data of Plasma Physics (Wiley, London, 1959), pp. 142–155.

J. Simpson, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Magnesium oxide cell. The MgO crystals were obtained from Semi-Elements, Inc., Saxonburg, Pa., and the solder from Handy & Harman, New York, N.Y.

Fig. 2
Fig. 2

(a) Flow lamp assembly drawing. The silver electrodes (A) are formed by application of silver application of silver conductive coating (DuPont No. 4545) and subsequent heating with a mild flame. The thin wall stainless-steel support tube (C) provides thermal insulation for the oven. A metal thermocouple vacuum gauge (Hastings VT-4) is attached to the port (F). The copper liner (H) was required to prevent chemical attack and subsequent cracking of the quartz by lithium. (b) Flow lamp oven details and assembly. The abbreviations S.S. and B.N. stand for stainless steel and boron nitride, respectively. The heater is conveniently made of No. 26 nichrome or tungsten helically wound wire. Prewound nichrome helical coil wire with an outside diameter of 2.4 mm is obtainable from the Driver-Harris Co., Harrison, N.J.

Fig. 3
Fig. 3

Schematic diagram of lamp exciter oscillator.

Fig. 4
Fig. 4

Hollow cathode lamp. The important dimensions are shown on the figure.

Fig. 5
Fig. 5

Alternate design for hollow cathode lamp. The spacing between the collar on the cathode and the glass vacuum jacket must be small (typically, 0.4 mm) to confine the discharge to the cathode region. The heavy copper cathode support and the thin wall stainless-steel vacuum envelope permit liquid nitrogen or other cooling of the cathode. The gas inlet passage has been arranged so that the gas is forced to flow through the discharge region. The performance of this lamp is about the same as that shown in Fig. 4.

Fig. 6
Fig. 6

Gas recirculation system.

Fig. 7
Fig. 7

Gehlhoff gas purifying cell.

Metrics