Abstract

The optical properties of systems for protection against thermal radiation play a primary role in determining their effectiveness. An improved integrating sphere provides for determination of the average reflectance and transmittance of materials, each in a single measurement; this average is the correctly weighed average for the source. The sphere coating of pure aluminum oxide approaches the ideal of a perfectly diffuse reflectance, essentially constant over the wavelength range of interest with improved permanence. The somewhat low average reflectance of this coating also reduces the error due to nonuniform spectral response. Results obtained with this device and by other methods agree. This instrument is especially useful where the same source is used for measurement of optical properties and for exposure of materials to intense radiation.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Davies, E. S. Cotton, Solar Energy 1, 16 (1957).
    [CrossRef]
  2. E. S. Cotton, W. P. Lynch, W. Zagieboylo, J. M. Davies, U. N. Conference on New Sources of Energy, Rome, Italy (August1961).
  3. B. McQue, U. S. Army Quartermaster Laboratories, Pioneering Research Division, Rept. No. T-6 (March1955).
  4. R. V. Dunkle, D. K. Edwards, J. T. Gier, J. T. Bevans, Solar Energy 4, 27 (1960).
    [CrossRef]
  5. R. Ulbricht, Electrotech. Z. 21, 595 (1900).
  6. J. W. T. Walsh, Photometry (Constable, London, 1953).
  7. E. Karrer, Scientific Papers of the Nat. Bur. of Std. No. 415 (10August1921).
  8. S. Glasstone, The Effects of Nuclear Weapons, U.S. Atomic Energy Commission (U.S. Government Printing Office, 1957).
    [CrossRef]
  9. E. S. Cotton, data assembled and calculated for use at the U.S. Army Natick Laboratories solar furnace (personal communication).
  10. L. J. Krolak, T. P. Davis, University of Rochester Atomic Energy Project Rept. UR-367 (10November1954).
  11. J. T. Agnew, R. B. McQuiston, J. Opt. Soc. Am. 43, 999 (1953).
    [CrossRef]
  12. R. M. Van Vliet, conversation during the Symposium on Radiative Transfer from Solid Materials, Boston, Mass. (12–13 December 1960), sponsored by Air Force Cambridge Research Laboratories and Arthur D. Little, Inc.
  13. Gardner Laboratory Newsletter, Vol. 6, No. 52.
  14. R. S. Hunter, Natl. Bur. Std. (U.S.) Circ. No. 429 (July1952).
  15. J. L. Michaelson, J. Opt. Soc. Am. 28, 365 (1938).
    [CrossRef]
  16. J. H. Cary, A. O. Beckman, J. Opt. Soc. Am. 31, 682 (1941).
    [CrossRef]
  17. W. E. Middleton, C. L. Sanders, J. Opt. Soc. Am. 41, 419 (1951).
    [CrossRef] [PubMed]
  18. C. L. Sanders, W. E. Middleton, J. Opt. Soc. Am. 43, 582 (1953).
    [CrossRef]
  19. A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 1, p. 43.
  20. A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermnophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 3, p. 41.
  21. G. Hass, H. H. Schroeder, A. F. Turner, J. Opt. Soc. Am. 46, 31 (1956).
    [CrossRef]
  22. A. C. Hardy, O. W. Pineo, J. Opt. Soc. Am. 21, 742 (1932).
  23. Letter, 12November1954, from U.S. Army Quartermaster Laboratories to Armed Forces Special Weapons Project.
  24. A. O. Ramsley, U.S. Army Quartermaster Laboratories, Textile Dyeing Laboratory Research Rept. No. 141 (April1959).
  25. G. P. deLhery, W. Derksen, T. I. Monahan, U.S. Naval Material Laboratory, Brooklyn, New York, Rept. AFSWP-957 (28August1956).
  26. L. J. Krolak, T. P. Davis, University of Rochester Atomic Energy Project Rept. UR-380 (24January1955).
  27. J. A. Sanderson, J. Opt. Soc. Am. 37, 771 (1947).
    [CrossRef] [PubMed]
  28. W. L. Derksen, T. I. Monahan, A. J. Lawes, J. Opt. Soc. Am. 47, 995 (1957).
    [CrossRef]

1960 (1)

R. V. Dunkle, D. K. Edwards, J. T. Gier, J. T. Bevans, Solar Energy 4, 27 (1960).
[CrossRef]

1957 (2)

1956 (1)

1953 (2)

C. L. Sanders, W. E. Middleton, J. Opt. Soc. Am. 43, 582 (1953).
[CrossRef]

J. T. Agnew, R. B. McQuiston, J. Opt. Soc. Am. 43, 999 (1953).
[CrossRef]

1952 (1)

R. S. Hunter, Natl. Bur. Std. (U.S.) Circ. No. 429 (July1952).

1951 (1)

1947 (1)

1941 (1)

1938 (1)

1932 (1)

A. C. Hardy, O. W. Pineo, J. Opt. Soc. Am. 21, 742 (1932).

1900 (1)

R. Ulbricht, Electrotech. Z. 21, 595 (1900).

Agnew, J. T.

Beckman, A. O.

Bevans, J. T.

R. V. Dunkle, D. K. Edwards, J. T. Gier, J. T. Bevans, Solar Energy 4, 27 (1960).
[CrossRef]

Cary, J. H.

Cotton, E. S.

J. M. Davies, E. S. Cotton, Solar Energy 1, 16 (1957).
[CrossRef]

E. S. Cotton, W. P. Lynch, W. Zagieboylo, J. M. Davies, U. N. Conference on New Sources of Energy, Rome, Italy (August1961).

Davies, J. M.

J. M. Davies, E. S. Cotton, Solar Energy 1, 16 (1957).
[CrossRef]

E. S. Cotton, W. P. Lynch, W. Zagieboylo, J. M. Davies, U. N. Conference on New Sources of Energy, Rome, Italy (August1961).

Davis, T. P.

L. J. Krolak, T. P. Davis, University of Rochester Atomic Energy Project Rept. UR-367 (10November1954).

L. J. Krolak, T. P. Davis, University of Rochester Atomic Energy Project Rept. UR-380 (24January1955).

deLhery, G. P.

G. P. deLhery, W. Derksen, T. I. Monahan, U.S. Naval Material Laboratory, Brooklyn, New York, Rept. AFSWP-957 (28August1956).

Derksen, W.

G. P. deLhery, W. Derksen, T. I. Monahan, U.S. Naval Material Laboratory, Brooklyn, New York, Rept. AFSWP-957 (28August1956).

Derksen, W. L.

Dunkle, R. V.

R. V. Dunkle, D. K. Edwards, J. T. Gier, J. T. Bevans, Solar Energy 4, 27 (1960).
[CrossRef]

Edwards, D. K.

R. V. Dunkle, D. K. Edwards, J. T. Gier, J. T. Bevans, Solar Energy 4, 27 (1960).
[CrossRef]

Gier, J. T.

R. V. Dunkle, D. K. Edwards, J. T. Gier, J. T. Bevans, Solar Energy 4, 27 (1960).
[CrossRef]

Glasstone, S.

S. Glasstone, The Effects of Nuclear Weapons, U.S. Atomic Energy Commission (U.S. Government Printing Office, 1957).
[CrossRef]

Goldsmith, A.

A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 1, p. 43.

A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermnophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 3, p. 41.

Hardy, A. C.

A. C. Hardy, O. W. Pineo, J. Opt. Soc. Am. 21, 742 (1932).

Hass, G.

Hirschhorn, H. J.

A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 1, p. 43.

A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermnophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 3, p. 41.

Hunter, R. S.

R. S. Hunter, Natl. Bur. Std. (U.S.) Circ. No. 429 (July1952).

Karrer, E.

E. Karrer, Scientific Papers of the Nat. Bur. of Std. No. 415 (10August1921).

Krolak, L. J.

L. J. Krolak, T. P. Davis, University of Rochester Atomic Energy Project Rept. UR-380 (24January1955).

L. J. Krolak, T. P. Davis, University of Rochester Atomic Energy Project Rept. UR-367 (10November1954).

Lawes, A. J.

Lynch, W. P.

E. S. Cotton, W. P. Lynch, W. Zagieboylo, J. M. Davies, U. N. Conference on New Sources of Energy, Rome, Italy (August1961).

McQue, B.

B. McQue, U. S. Army Quartermaster Laboratories, Pioneering Research Division, Rept. No. T-6 (March1955).

McQuiston, R. B.

Michaelson, J. L.

Middleton, W. E.

C. L. Sanders, W. E. Middleton, J. Opt. Soc. Am. 43, 582 (1953).
[CrossRef]

W. E. Middleton, C. L. Sanders, J. Opt. Soc. Am. 41, 419 (1951).
[CrossRef] [PubMed]

Monahan, T. I.

W. L. Derksen, T. I. Monahan, A. J. Lawes, J. Opt. Soc. Am. 47, 995 (1957).
[CrossRef]

G. P. deLhery, W. Derksen, T. I. Monahan, U.S. Naval Material Laboratory, Brooklyn, New York, Rept. AFSWP-957 (28August1956).

Pineo, O. W.

A. C. Hardy, O. W. Pineo, J. Opt. Soc. Am. 21, 742 (1932).

Ramsley, A. O.

A. O. Ramsley, U.S. Army Quartermaster Laboratories, Textile Dyeing Laboratory Research Rept. No. 141 (April1959).

Sanders, C. L.

C. L. Sanders, W. E. Middleton, J. Opt. Soc. Am. 43, 582 (1953).
[CrossRef]

W. E. Middleton, C. L. Sanders, J. Opt. Soc. Am. 41, 419 (1951).
[CrossRef] [PubMed]

Sanderson, J. A.

Schroeder, H. H.

Turner, A. F.

Ulbricht, R.

R. Ulbricht, Electrotech. Z. 21, 595 (1900).

Van Vliet, R. M.

R. M. Van Vliet, conversation during the Symposium on Radiative Transfer from Solid Materials, Boston, Mass. (12–13 December 1960), sponsored by Air Force Cambridge Research Laboratories and Arthur D. Little, Inc.

Walsh, J. W. T.

J. W. T. Walsh, Photometry (Constable, London, 1953).

Waterman, T. E.

A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermnophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 3, p. 41.

A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 1, p. 43.

Zagieboylo, W.

E. S. Cotton, W. P. Lynch, W. Zagieboylo, J. M. Davies, U. N. Conference on New Sources of Energy, Rome, Italy (August1961).

Electrotech. Z. (1)

R. Ulbricht, Electrotech. Z. 21, 595 (1900).

J. Opt. Soc. Am. (9)

Natl. Bur. Std. (U.S.) Circ. (1)

R. S. Hunter, Natl. Bur. Std. (U.S.) Circ. No. 429 (July1952).

Solar Energy (2)

R. V. Dunkle, D. K. Edwards, J. T. Gier, J. T. Bevans, Solar Energy 4, 27 (1960).
[CrossRef]

J. M. Davies, E. S. Cotton, Solar Energy 1, 16 (1957).
[CrossRef]

Other (15)

E. S. Cotton, W. P. Lynch, W. Zagieboylo, J. M. Davies, U. N. Conference on New Sources of Energy, Rome, Italy (August1961).

B. McQue, U. S. Army Quartermaster Laboratories, Pioneering Research Division, Rept. No. T-6 (March1955).

Letter, 12November1954, from U.S. Army Quartermaster Laboratories to Armed Forces Special Weapons Project.

A. O. Ramsley, U.S. Army Quartermaster Laboratories, Textile Dyeing Laboratory Research Rept. No. 141 (April1959).

G. P. deLhery, W. Derksen, T. I. Monahan, U.S. Naval Material Laboratory, Brooklyn, New York, Rept. AFSWP-957 (28August1956).

L. J. Krolak, T. P. Davis, University of Rochester Atomic Energy Project Rept. UR-380 (24January1955).

J. W. T. Walsh, Photometry (Constable, London, 1953).

E. Karrer, Scientific Papers of the Nat. Bur. of Std. No. 415 (10August1921).

S. Glasstone, The Effects of Nuclear Weapons, U.S. Atomic Energy Commission (U.S. Government Printing Office, 1957).
[CrossRef]

E. S. Cotton, data assembled and calculated for use at the U.S. Army Natick Laboratories solar furnace (personal communication).

L. J. Krolak, T. P. Davis, University of Rochester Atomic Energy Project Rept. UR-367 (10November1954).

R. M. Van Vliet, conversation during the Symposium on Radiative Transfer from Solid Materials, Boston, Mass. (12–13 December 1960), sponsored by Air Force Cambridge Research Laboratories and Arthur D. Little, Inc.

Gardner Laboratory Newsletter, Vol. 6, No. 52.

A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 1, p. 43.

A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of Thermnophysical Properties of Solid Materials (Macmillan, New York, 1961), Vol. 3, p. 41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Relative spectral power of various sources of thermal radiation. — U.S. Army Natick Laboratories solar furnace, as calculated by Cotton; – – – University of Rochester carbon arc, as measured by Krolak and Davis; — · — · 6000°K blackbody.

Fig. 2
Fig. 2

Variation in reflectance with angle for various materials: 1. Freshly prepared magnesium oxide, about 0.76 mm thick. 2. Flame sprayed aluminum oxide, commercially pure. 3. Flame sprayed aluminum oxide, pure (sapphire).

Fig. 3
Fig. 3

Effect of wavelength on angular distribution of reflected intensity. Upper curves, flame sprayed sapphire, about 0.38 mm thick; lower curves, sandblasted aluminum. Scales: no filter, ×1; green, ×1/10; amber, ×1/10; blue, ×1/30 for sapphire, ×1/26 for aluminum.

Fig. 4
Fig. 4

Dependence of diffuse reflectance on wavelength for various materials.

Fig. 5
Fig. 5

Dependence of diffuse reflectance on wavelength for pure aluminum oxide for various thicknesses.

Fig. 6
Fig. 6

System for measuring average reflectance and transmittance of diffusely reflecting materials. A, Mirror system; B light chopper; C, collimator; D, sample position for transmittance; E, integrating sphere: 1–2 ports spaced to allow elimination of reflected specular component, 3–4 ports to allow interchange of sample and standard; F, vacuum thermocouple; G sample position for reflectance; H, optical alignment target; I, thermocouple amplifier; J, microammeter.

Fig. 7
Fig. 7

Dependence of diffuse reflectance of Quartermaster fabrics on wavelength. K + D, Krolak and Davis, University of Rochester; deL, D + M, deLhery, Derksen and Monahan, U.S. Naval Material Laboratory.

Tables (2)

Tables Icon

Table I Comparison of Measurements of the Optical Properties of Quartermaster Fabrics Made with the Natick Laboratories Integrating Sphere and the University of California Solar Reflectometer

Tables Icon

Table II Comparison of Average Optical Properties of Quartermaster Fabrics Determined for Carbon Arc Radiation in Various Ways

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B = C Q / ( 1 - r ) ,

Metrics