Abstract

Transmittance measurements of optical materials were made at 25°C, 100°C, 200°C, 300°C, and 400°C in the 1-μ to 12-μ range with a Perkin-Elmer Model 21 spectrophotometer. A continuous proportioning temperature control system, using a modified Loyola LC-2 4KVA Power Manipulator in conjunction with a Wheelco Capacitrol, provided a given temperature level in high-temperature cells. The following materials, which are dielectrics and semiconductors of potential use as windows and IRDOMES in optical systems at high temperatures, were selected: Corning glasses, Nos. 0160, 8363, and 7905; fused, water-free quartz, type 106, General Electric; Barr and Stroud calcium aluminate, 37A and 39A; sapphire, Linde Company; Irtran-1 and Irtran-2; silver chloride; sodium chloride; silicon; and germanium. A final transmittance trace, corrected for cell characteristics, of each optical material at a given temperature was obtained by drawing a smooth curve through the point-by-point adjustments of the specimen spectrum. The transmittance of dielectrics remains relatively unaffected up to 400°C. Optical materials of this class are restricted in use at the higher temperatures only in the shift of the long-wavelength transmittance limit. With the semiconductors silicon and germanium, the absorption edge is shifted to longer wavelengths, and the over-all transmittance is greatly reduced with increase of temperature.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Borough, Boeing Airplane Company, Seattle, Wash., Preliminary Information (1957).
  2. G. E. Grantham, Phys. Rev. 16, 565 (1920).
    [CrossRef]
  3. F. G. Grove, P. E. Jellyman, J. Soc. Glass Technol. 39, 3 (1955).
  4. A. J. Holland, W. E. S. Turner, J. Soc. Glass Technol. 25, 164 (1941).
  5. E. D. McAlister, Proc. Infrared Inform. Symp. 4, 139 (1959).
  6. H. O. McMahon, J. Am. Ceram. Soc. 34, 91 (1951).
    [CrossRef]
  7. N. F. Beardsley, Proc. Infrared Inform. Symp. 1, 47 (1956).
  8. D. Mergerian, Proc. Infrared Inform. Symp. 4, 146 (1959).
  9. C. J. Parker, M. E. Nordberg, J. Opt. Soc. Am. 49, 856 (1959).
    [CrossRef]
  10. A. L. Olsen, Anal. Chem. 30, 158 (1958).
    [CrossRef]
  11. D. T. Gillespie, A. L. Olsen, Instr. Control Systems 37, 104 (1964).
  12. A. L. Olsen, K. B. LaBaw, L. W. Nichols, J. Opt. Soc. Am. 54, 813 (1964).
    [CrossRef]
  13. H. O. McMahon, J. Opt. Soc. Am. 40, 376 (1950).
    [CrossRef]
  14. A. L. Olsen, L. W. Nichols, E. Regelson, NAVORD Rept. 5584 (1957), China Lake, Calif.
  15. S. S. Ballard, K. A. McCarthy, W. L. Wolfe, IRIA State-of-the-Art Rept. 2389-11-S (1959), The University of Michigan, Ann Arbor, Mich.
  16. Ref. 15, Supplement, 2389-11-S1 (1961).
  17. T. S. Moss, Optical Properties of Semiconductors (Butterworths, London, 1959), pp. 113–150.
  18. H. L. Hackforth, Infrared Radiation (McGraw-Hill, New York, 1960), pp. 107–137.
  19. M. R. Holter, S. Nudelman, G. H. Suits, W. L. Wolfe, G. J. Zissis, Fundamentals of Infrared Technology (Macmillan, New York, 1962), pp. 121–140.
  20. P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, New York, 1962), pp. 119–162.
  21. H. Y. Fan, M. L. Shepard, W. Spitzer, Photoconductivity Conference (Wiley, New York, 1954), p. 193.
  22. B. Lax, S. Zwerdling, Progress in Semiconductors (Wiley, New York, 1960), Vol. 5, p. 226.

1964

D. T. Gillespie, A. L. Olsen, Instr. Control Systems 37, 104 (1964).

A. L. Olsen, K. B. LaBaw, L. W. Nichols, J. Opt. Soc. Am. 54, 813 (1964).
[CrossRef]

1959

E. D. McAlister, Proc. Infrared Inform. Symp. 4, 139 (1959).

D. Mergerian, Proc. Infrared Inform. Symp. 4, 146 (1959).

C. J. Parker, M. E. Nordberg, J. Opt. Soc. Am. 49, 856 (1959).
[CrossRef]

1958

A. L. Olsen, Anal. Chem. 30, 158 (1958).
[CrossRef]

1956

N. F. Beardsley, Proc. Infrared Inform. Symp. 1, 47 (1956).

1955

F. G. Grove, P. E. Jellyman, J. Soc. Glass Technol. 39, 3 (1955).

1951

H. O. McMahon, J. Am. Ceram. Soc. 34, 91 (1951).
[CrossRef]

1950

1941

A. J. Holland, W. E. S. Turner, J. Soc. Glass Technol. 25, 164 (1941).

1920

G. E. Grantham, Phys. Rev. 16, 565 (1920).
[CrossRef]

Ballard, S. S.

S. S. Ballard, K. A. McCarthy, W. L. Wolfe, IRIA State-of-the-Art Rept. 2389-11-S (1959), The University of Michigan, Ann Arbor, Mich.

Beardsley, N. F.

N. F. Beardsley, Proc. Infrared Inform. Symp. 1, 47 (1956).

Borough, H. C.

H. C. Borough, Boeing Airplane Company, Seattle, Wash., Preliminary Information (1957).

Fan, H. Y.

H. Y. Fan, M. L. Shepard, W. Spitzer, Photoconductivity Conference (Wiley, New York, 1954), p. 193.

Gillespie, D. T.

D. T. Gillespie, A. L. Olsen, Instr. Control Systems 37, 104 (1964).

Grantham, G. E.

G. E. Grantham, Phys. Rev. 16, 565 (1920).
[CrossRef]

Grove, F. G.

F. G. Grove, P. E. Jellyman, J. Soc. Glass Technol. 39, 3 (1955).

Hackforth, H. L.

H. L. Hackforth, Infrared Radiation (McGraw-Hill, New York, 1960), pp. 107–137.

Holland, A. J.

A. J. Holland, W. E. S. Turner, J. Soc. Glass Technol. 25, 164 (1941).

Holter, M. R.

M. R. Holter, S. Nudelman, G. H. Suits, W. L. Wolfe, G. J. Zissis, Fundamentals of Infrared Technology (Macmillan, New York, 1962), pp. 121–140.

Jellyman, P. E.

F. G. Grove, P. E. Jellyman, J. Soc. Glass Technol. 39, 3 (1955).

Kruse, P. W.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, New York, 1962), pp. 119–162.

LaBaw, K. B.

Lax, B.

B. Lax, S. Zwerdling, Progress in Semiconductors (Wiley, New York, 1960), Vol. 5, p. 226.

McAlister, E. D.

E. D. McAlister, Proc. Infrared Inform. Symp. 4, 139 (1959).

McCarthy, K. A.

S. S. Ballard, K. A. McCarthy, W. L. Wolfe, IRIA State-of-the-Art Rept. 2389-11-S (1959), The University of Michigan, Ann Arbor, Mich.

McGlauchlin, L. D.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, New York, 1962), pp. 119–162.

McMahon, H. O.

H. O. McMahon, J. Am. Ceram. Soc. 34, 91 (1951).
[CrossRef]

H. O. McMahon, J. Opt. Soc. Am. 40, 376 (1950).
[CrossRef]

McQuistan, R. B.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, New York, 1962), pp. 119–162.

Mergerian, D.

D. Mergerian, Proc. Infrared Inform. Symp. 4, 146 (1959).

Moss, T. S.

T. S. Moss, Optical Properties of Semiconductors (Butterworths, London, 1959), pp. 113–150.

Nichols, L. W.

A. L. Olsen, K. B. LaBaw, L. W. Nichols, J. Opt. Soc. Am. 54, 813 (1964).
[CrossRef]

A. L. Olsen, L. W. Nichols, E. Regelson, NAVORD Rept. 5584 (1957), China Lake, Calif.

Nordberg, M. E.

Nudelman, S.

M. R. Holter, S. Nudelman, G. H. Suits, W. L. Wolfe, G. J. Zissis, Fundamentals of Infrared Technology (Macmillan, New York, 1962), pp. 121–140.

Olsen, A. L.

D. T. Gillespie, A. L. Olsen, Instr. Control Systems 37, 104 (1964).

A. L. Olsen, K. B. LaBaw, L. W. Nichols, J. Opt. Soc. Am. 54, 813 (1964).
[CrossRef]

A. L. Olsen, Anal. Chem. 30, 158 (1958).
[CrossRef]

A. L. Olsen, L. W. Nichols, E. Regelson, NAVORD Rept. 5584 (1957), China Lake, Calif.

Parker, C. J.

Regelson, E.

A. L. Olsen, L. W. Nichols, E. Regelson, NAVORD Rept. 5584 (1957), China Lake, Calif.

Shepard, M. L.

H. Y. Fan, M. L. Shepard, W. Spitzer, Photoconductivity Conference (Wiley, New York, 1954), p. 193.

Spitzer, W.

H. Y. Fan, M. L. Shepard, W. Spitzer, Photoconductivity Conference (Wiley, New York, 1954), p. 193.

Suits, G. H.

M. R. Holter, S. Nudelman, G. H. Suits, W. L. Wolfe, G. J. Zissis, Fundamentals of Infrared Technology (Macmillan, New York, 1962), pp. 121–140.

Turner, W. E. S.

A. J. Holland, W. E. S. Turner, J. Soc. Glass Technol. 25, 164 (1941).

Wolfe, W. L.

M. R. Holter, S. Nudelman, G. H. Suits, W. L. Wolfe, G. J. Zissis, Fundamentals of Infrared Technology (Macmillan, New York, 1962), pp. 121–140.

S. S. Ballard, K. A. McCarthy, W. L. Wolfe, IRIA State-of-the-Art Rept. 2389-11-S (1959), The University of Michigan, Ann Arbor, Mich.

Zissis, G. J.

M. R. Holter, S. Nudelman, G. H. Suits, W. L. Wolfe, G. J. Zissis, Fundamentals of Infrared Technology (Macmillan, New York, 1962), pp. 121–140.

Zwerdling, S.

B. Lax, S. Zwerdling, Progress in Semiconductors (Wiley, New York, 1960), Vol. 5, p. 226.

Anal. Chem.

A. L. Olsen, Anal. Chem. 30, 158 (1958).
[CrossRef]

Instr. Control Systems

D. T. Gillespie, A. L. Olsen, Instr. Control Systems 37, 104 (1964).

J. Am. Ceram. Soc.

H. O. McMahon, J. Am. Ceram. Soc. 34, 91 (1951).
[CrossRef]

J. Opt. Soc. Am.

J. Soc. Glass Technol.

F. G. Grove, P. E. Jellyman, J. Soc. Glass Technol. 39, 3 (1955).

A. J. Holland, W. E. S. Turner, J. Soc. Glass Technol. 25, 164 (1941).

Phys. Rev.

G. E. Grantham, Phys. Rev. 16, 565 (1920).
[CrossRef]

Proc. Infrared Inform. Symp.

E. D. McAlister, Proc. Infrared Inform. Symp. 4, 139 (1959).

N. F. Beardsley, Proc. Infrared Inform. Symp. 1, 47 (1956).

D. Mergerian, Proc. Infrared Inform. Symp. 4, 146 (1959).

Other

H. C. Borough, Boeing Airplane Company, Seattle, Wash., Preliminary Information (1957).

A. L. Olsen, L. W. Nichols, E. Regelson, NAVORD Rept. 5584 (1957), China Lake, Calif.

S. S. Ballard, K. A. McCarthy, W. L. Wolfe, IRIA State-of-the-Art Rept. 2389-11-S (1959), The University of Michigan, Ann Arbor, Mich.

Ref. 15, Supplement, 2389-11-S1 (1961).

T. S. Moss, Optical Properties of Semiconductors (Butterworths, London, 1959), pp. 113–150.

H. L. Hackforth, Infrared Radiation (McGraw-Hill, New York, 1960), pp. 107–137.

M. R. Holter, S. Nudelman, G. H. Suits, W. L. Wolfe, G. J. Zissis, Fundamentals of Infrared Technology (Macmillan, New York, 1962), pp. 121–140.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, New York, 1962), pp. 119–162.

H. Y. Fan, M. L. Shepard, W. Spitzer, Photoconductivity Conference (Wiley, New York, 1954), p. 193.

B. Lax, S. Zwerdling, Progress in Semiconductors (Wiley, New York, 1960), Vol. 5, p. 226.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Corning No. 0160.

Fig. 2
Fig. 2

VYCOR, Corning No. 7905.

Fig. 3
Fig. 3

Corning No. 8363.

Fig. 4
Fig. 4

Fused quartz: General Electric Type 106.

Fig. 5
Fig. 5

Calcium aluminate, 37A, Barr and Stroud, U.K.

Fig. 6
Fig. 6

Calcium aluminate, 39A, Barr and Stroud, U.K.

Fig. 7
Fig. 7

Sapphire, Linde Company.

Fig. 8
Fig. 8

Irtran-1, Eastman Kodak Company.

Fig. 9
Fig. 9

Irtran-2, Eastman Kodak Company.

Fig. 10
Fig. 10

Silver chloride, Harshaw Chemical Company; 25°C, 100°C, 200°C.

Fig. 11
Fig. 11

Sodium chloride, Harshaw Chemical Company.

Fig. 12
Fig. 12

Silicon, single crystal; n-type; resistivity, 5 Ω-cm.

Fig. 13
Fig. 13

Germanium, single crystal; p-type; resistivity, 30 Ω-cm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ 1 = E S E R + t R I R , τ 2 = E S + t S I S E R + t R I R ,
τ 3 = E S E R + t R I R , τ 4 = E S + t t S I S E R + t R I R .
t = τ 4 τ 3 τ 2 τ 1 .
λ c ( μ ) = h c E gap = 1.24 eV ,

Metrics