Abstract

The operation of coupling-type internal modulators is reviewed briefly, and the bandwidth limitations are examined. It is found that excitation of natural modes of the resonator will normally restrict the signal bandwidth to half the longitudinal mode spacing. However, the bandwidth can be extended if the maser is permitted to oscillate in only one mode, if only a small fraction of the internal energy is coupled out, and if large attenuation can be introduced at appropriate resonator mode frequencies.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Gürs, Z. Physik 172, 145 (1963).
    [CrossRef]
  2. K. Gürs, R. Müller, in Optical Masers (Polytechnic Press, Brooklyn, N. Y., 1963). See alsoK. Gürs, R. Müller, Phys. Rev. Letters 5, 179 (1963).
  3. G. Grau, D. Rosenberger, Phys. Rev. Letters 6, 129 (1963).
  4. D. A. Kleinman, P. P. Kisliuk, Bell. System Tech. J., 41, 453 (1962). See alsoH. Kogelnik, C. K. N. Patel, Proc. Inst. Radio Engrs. 50, 2365 (1962).
  5. S. A. Collins, G. R. White, Appl. Opt. 2, 448 (1963). See alsoH. Manger, H. Rothe, Phys. Rev. Letters 7, 330 (1963); D. Roess, Proc. IEEE 52, 198 (1964).
    [CrossRef]

1963

1962

D. A. Kleinman, P. P. Kisliuk, Bell. System Tech. J., 41, 453 (1962). See alsoH. Kogelnik, C. K. N. Patel, Proc. Inst. Radio Engrs. 50, 2365 (1962).

Collins, S. A.

Grau, G.

G. Grau, D. Rosenberger, Phys. Rev. Letters 6, 129 (1963).

Gürs, K.

K. Gürs, Z. Physik 172, 145 (1963).
[CrossRef]

K. Gürs, R. Müller, in Optical Masers (Polytechnic Press, Brooklyn, N. Y., 1963). See alsoK. Gürs, R. Müller, Phys. Rev. Letters 5, 179 (1963).

Kisliuk, P. P.

D. A. Kleinman, P. P. Kisliuk, Bell. System Tech. J., 41, 453 (1962). See alsoH. Kogelnik, C. K. N. Patel, Proc. Inst. Radio Engrs. 50, 2365 (1962).

Kleinman, D. A.

D. A. Kleinman, P. P. Kisliuk, Bell. System Tech. J., 41, 453 (1962). See alsoH. Kogelnik, C. K. N. Patel, Proc. Inst. Radio Engrs. 50, 2365 (1962).

Müller, R.

K. Gürs, R. Müller, in Optical Masers (Polytechnic Press, Brooklyn, N. Y., 1963). See alsoK. Gürs, R. Müller, Phys. Rev. Letters 5, 179 (1963).

Rosenberger, D.

G. Grau, D. Rosenberger, Phys. Rev. Letters 6, 129 (1963).

White, G. R.

Appl. Opt.

Bell. System Tech. J.

D. A. Kleinman, P. P. Kisliuk, Bell. System Tech. J., 41, 453 (1962). See alsoH. Kogelnik, C. K. N. Patel, Proc. Inst. Radio Engrs. 50, 2365 (1962).

Phys. Rev. Letters

G. Grau, D. Rosenberger, Phys. Rev. Letters 6, 129 (1963).

Z. Physik

K. Gürs, Z. Physik 172, 145 (1963).
[CrossRef]

Other

K. Gürs, R. Müller, in Optical Masers (Polytechnic Press, Brooklyn, N. Y., 1963). See alsoK. Gürs, R. Müller, Phys. Rev. Letters 5, 179 (1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Deflector modulating element. (a). One-way. (b). Two-way.

Fig. 2
Fig. 2

Push–pull configuration.

Fig. 3
Fig. 3

(a). Coupling modulator; the distance between the modulator and the right-hand mirror is assumed very small. (b). Coupling modulator with selective push–pull.

Fig. 4
Fig. 4

Equivalent feedback loop for coupling modulator of Fig. 3(a).

Fig. 5
Fig. 5

(a) Spectrum of internal field showing signal band W and band generated by second harmonic of ωm. (b) Spectrum of coupled field showing excited modes a±4 and their side-bands overlapping W.

Fig. 6
Fig. 6

Allowed sideband spectrum for push–pull coupling schemes without suppression. The resonator mode spectrum is shown below the frequency axis.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 cos ( Γ / 2 ) · cos ω t , E = E 0 sin ( Γ / 2 ) · sin ω t .
E ( E 0 Γ 0 / 2 ) cos ω m t sin ω c t = ( E 0 Γ 0 / 4 ) { sin ( ω c - ω m ) t + sin ( ω c + ω m ) t } ,
E E 0 ( 1 - Γ 0 2 cos 2 ω m t 8 ) cos ω c t = E 0 { ( 1 - Γ 0 2 16 ) cos ω c t - Γ 0 2 32 × [ cos ( ω c + 2 ω m ) t + cos ( ω c - 2 ω m ) t ] } ,
E E 0 γ 2 ( 1 + m co ω s m t ) sin ω c t = E 0 γ 2 { sin ω c t + m 2 [ sin ( ω c - ω m ) t + sin ( ω c + ω m ) t ] }
E E 0 [ 1 - γ 2 8 ( 1 + 2 m cos ω m t + m 2 cos 2 ω m t ) ] cos ω c t = E 0 { ( 1 - γ 2 8 - γ 2 m 2 16 ) cos ω c t - γ 2 m 8 [ cos ( ω c - ω m ) t + cos ( ω c + ω m ) t ] - γ 2 m 2 32 [ cos ( ω c - 2 ω m ) t + cos ( ω c + 2 ω m ) t ] } .
2 d / c = [ 2 π ( 2 p + 1 ) ] / 2 ω m ,
d = ( 2 p + 1 ) / q · L / 2.
E 1 = n a n cos ω n t ,             a 0 = 1 ,
E 2 = n a n { ( 1 - γ 2 8 - γ 2 m 2 16 ) cos ω n t - γ 2 m 8 [ cos ( ω n - ω m ) t + cos ( ω n + ω m ) t ] - γ 2 m 2 32 [ cos ( ω n - 2 ω m ) t + cos ( ω n + 2 ω m ) t ] } ,
E 3 = n e - α n 2 L { ( 1 - γ 2 8 - γ 2 m 2 16 ) a n - γ 2 m 8 ( a n + q + a n - q ) - γ 2 m 2 32 ( a n + 2 q + a n - 2 q ) } cos ω n t .
a n = e - α n 2 L { ( 1 - γ 2 8 - γ 2 m 2 16 ) a n - γ 2 m 8 ( a n + q + a n - q ) - γ 2 m 2 32 ( a n + 2 q + a n - 2 q ) } .
a q - ( γ 2 m 8 ) [ exp ( α q 2 L ) + γ 2 32 ( 4 + 3 m 2 ) - 1 ] - 1 ,
a 2 q - ( γ 2 m 2 32 ) [ exp ( α 2 q 2 L ) + γ 2 32 ( 4 + 3 m 2 ) - 1 ] - 1 .
a q - ( γ 2 m 8 ) [ α q 2 L + γ 2 32 ( 4 + 3 m 2 ) ] - 1 ,
a 2 q - ( γ 2 m 2 32 ) [ α 2 q 2 L + γ 2 32 ( 4 + 3 m 2 ) ] - 1 ,
a q - ( γ 2 m / 8 ) e - α q 2 L ,
a 2 q - ( γ 2 m 2 / 32 ) e - α 2 q 2 L ,
a n = e - α n 2 L { ( 1 - γ 2 8 - γ 2 m 2 16 ) a n - γ 2 m 2 32 ( a n + 2 q + 1 + a n - 2 q - 1 ) } ,
a 2 q + 1 - γ 2 m 2 32 e - α 2 q + 1 2 L ,
a n / a 0 m / 2
a n / a 0 1

Metrics