Abstract

The spectral properties of plant leaves and stems have been obtained for ultraviolet, visible, and infrared frequencies. The spectral reflectance, transmittance, and absorptance for certain plants is given. The mechanism by which radiant energy interacts with a leaf is discussed, including the presence of plant pigments. Examples are given concerning the amount of absorbed solar radiation for clear sky and overcast conditions. The spectral properties of desert plants are compared with those of more mesic plants. The evolution of the spectral properties of plant leaves during the early growing season is given as well as the colorimetric behavior during the autumn.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. French, in Encyclopedia of Plant Physiology, W. Ruhland, ed. (Springer, Berlin, 1960), pp. 252–297.
  2. M. Calvin, G. M. Androes, Science 138, 867 (1962).
    [CrossRef] [PubMed]
  3. E. S. Clements, Trans. Am. Microscop. Soc. 26, 19 (1904).
    [CrossRef]
  4. C. S. French, V. M. K. Young, in Radiation Biology, A. Hollaender, ed. (McGraw-Hill, New York, 1956), Chap. 6, pp. 343–391.
  5. G. S. Rabideau, C. S. French, A. S. Holt, Am. J. Botan. 33, 769 (1946).
    [CrossRef]
  6. C. A. Shull, Botan. Gaz. 87, 583 (1929).
    [CrossRef]
  7. H. J. McNicholas, J. Res. Natl. Bur. Std. 7, 171 (1931).
  8. W. Clark, Photography by Infrared (Wiley, New York, 1946), 2nd ed., 472 pp.
  9. E. L. Krinov, “Spectral reflectance properties of natural formations”, Area Methods Laboratory, Academy of Sciences, USSR. Technical translation TT-439 by E. Belkov, National Research Council of Canada, Ottawa, 268 pp. (1953).
  10. A. F. Kleshnin, I. A. Shulgin, Dokl. Akad. Nauk. SSSR (Botan. Sci. Sect.) 125, 1158 (1959).
  11. W. D. Billings, R. J. Morris, Am. J. Botan. 38, 327 (1951).
    [CrossRef]
  12. F. Obaton, Compt. Rend. 218, 721 (1944).
  13. R. A. Moss, W. E. Loomis, Plant Physiol. 27, 370 (1952).
    [CrossRef] [PubMed]
  14. D. M. Gates, W. Tantraporn, Science 115, 613 (1952).
    [CrossRef] [PubMed]
  15. P. J. C. Kuiper, Plant Physiol. (submitted).
  16. K. S. Gibson, H. J. Keegan, J. Opt. Soc. Am. 28, 372 (1938).
    [CrossRef]
  17. H. J. Keegan, J. C. Schleter, D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
    [CrossRef]
  18. H. J. Keegan, J. C. Schleter, M. A. Belknap, J. Res. Natl. Bur. Std. 67A, 572 (1963); J. Opt. Soc. Am. 54, 69 (1964).
  19. D. M. Gates, Am. Sci. 51, 327 (1963).
  20. D. M. Gates, C. M. Benedict, Am. J. Botan. 50, 563 (1963).
    [CrossRef]
  21. R. Willstätter, A. Stoll, Untersuchungen über chlorophyll, (Springer, Berlin, 1913), English translation by F. M. Shertz, A. R. Mertz, 1928.
  22. P. Latimer, Science 127, 29 (1958).
    [CrossRef] [PubMed]
  23. R. M. Evans, An Introduction to Color (Wiley, New York, 1948), p. 92.
  24. H. C. J. Smith, V. M. K. Young, in Radiation Biology, A. Hollaender, ed. (McGraw-Hill, New York, 1956), Chap.7, pp. 393–442.
  25. D. M. Gates, E. C. Tibbals, F. Kreith, Am. J. Botan. (to be published).

1963

H. J. Keegan, J. C. Schleter, M. A. Belknap, J. Res. Natl. Bur. Std. 67A, 572 (1963); J. Opt. Soc. Am. 54, 69 (1964).

D. M. Gates, Am. Sci. 51, 327 (1963).

D. M. Gates, C. M. Benedict, Am. J. Botan. 50, 563 (1963).
[CrossRef]

1962

H. J. Keegan, J. C. Schleter, D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[CrossRef]

M. Calvin, G. M. Androes, Science 138, 867 (1962).
[CrossRef] [PubMed]

1959

A. F. Kleshnin, I. A. Shulgin, Dokl. Akad. Nauk. SSSR (Botan. Sci. Sect.) 125, 1158 (1959).

1958

P. Latimer, Science 127, 29 (1958).
[CrossRef] [PubMed]

1952

R. A. Moss, W. E. Loomis, Plant Physiol. 27, 370 (1952).
[CrossRef] [PubMed]

D. M. Gates, W. Tantraporn, Science 115, 613 (1952).
[CrossRef] [PubMed]

1951

W. D. Billings, R. J. Morris, Am. J. Botan. 38, 327 (1951).
[CrossRef]

1946

G. S. Rabideau, C. S. French, A. S. Holt, Am. J. Botan. 33, 769 (1946).
[CrossRef]

1944

F. Obaton, Compt. Rend. 218, 721 (1944).

1938

1931

H. J. McNicholas, J. Res. Natl. Bur. Std. 7, 171 (1931).

1929

C. A. Shull, Botan. Gaz. 87, 583 (1929).
[CrossRef]

1904

E. S. Clements, Trans. Am. Microscop. Soc. 26, 19 (1904).
[CrossRef]

Androes, G. M.

M. Calvin, G. M. Androes, Science 138, 867 (1962).
[CrossRef] [PubMed]

Belknap, M. A.

H. J. Keegan, J. C. Schleter, M. A. Belknap, J. Res. Natl. Bur. Std. 67A, 572 (1963); J. Opt. Soc. Am. 54, 69 (1964).

Benedict, C. M.

D. M. Gates, C. M. Benedict, Am. J. Botan. 50, 563 (1963).
[CrossRef]

Billings, W. D.

W. D. Billings, R. J. Morris, Am. J. Botan. 38, 327 (1951).
[CrossRef]

Calvin, M.

M. Calvin, G. M. Androes, Science 138, 867 (1962).
[CrossRef] [PubMed]

Clark, W.

W. Clark, Photography by Infrared (Wiley, New York, 1946), 2nd ed., 472 pp.

Clements, E. S.

E. S. Clements, Trans. Am. Microscop. Soc. 26, 19 (1904).
[CrossRef]

Evans, R. M.

R. M. Evans, An Introduction to Color (Wiley, New York, 1948), p. 92.

French, C. S.

G. S. Rabideau, C. S. French, A. S. Holt, Am. J. Botan. 33, 769 (1946).
[CrossRef]

C. S. French, in Encyclopedia of Plant Physiology, W. Ruhland, ed. (Springer, Berlin, 1960), pp. 252–297.

C. S. French, V. M. K. Young, in Radiation Biology, A. Hollaender, ed. (McGraw-Hill, New York, 1956), Chap. 6, pp. 343–391.

Gates, D. M.

D. M. Gates, Am. Sci. 51, 327 (1963).

D. M. Gates, C. M. Benedict, Am. J. Botan. 50, 563 (1963).
[CrossRef]

D. M. Gates, W. Tantraporn, Science 115, 613 (1952).
[CrossRef] [PubMed]

D. M. Gates, E. C. Tibbals, F. Kreith, Am. J. Botan. (to be published).

Gibson, K. S.

Holt, A. S.

G. S. Rabideau, C. S. French, A. S. Holt, Am. J. Botan. 33, 769 (1946).
[CrossRef]

Judd, D. B.

H. J. Keegan, J. C. Schleter, D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[CrossRef]

Keegan, H. J.

H. J. Keegan, J. C. Schleter, M. A. Belknap, J. Res. Natl. Bur. Std. 67A, 572 (1963); J. Opt. Soc. Am. 54, 69 (1964).

H. J. Keegan, J. C. Schleter, D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[CrossRef]

K. S. Gibson, H. J. Keegan, J. Opt. Soc. Am. 28, 372 (1938).
[CrossRef]

Kleshnin, A. F.

A. F. Kleshnin, I. A. Shulgin, Dokl. Akad. Nauk. SSSR (Botan. Sci. Sect.) 125, 1158 (1959).

Kreith, F.

D. M. Gates, E. C. Tibbals, F. Kreith, Am. J. Botan. (to be published).

Krinov, E. L.

E. L. Krinov, “Spectral reflectance properties of natural formations”, Area Methods Laboratory, Academy of Sciences, USSR. Technical translation TT-439 by E. Belkov, National Research Council of Canada, Ottawa, 268 pp. (1953).

Kuiper, P. J. C.

P. J. C. Kuiper, Plant Physiol. (submitted).

Latimer, P.

P. Latimer, Science 127, 29 (1958).
[CrossRef] [PubMed]

Loomis, W. E.

R. A. Moss, W. E. Loomis, Plant Physiol. 27, 370 (1952).
[CrossRef] [PubMed]

McNicholas, H. J.

H. J. McNicholas, J. Res. Natl. Bur. Std. 7, 171 (1931).

Morris, R. J.

W. D. Billings, R. J. Morris, Am. J. Botan. 38, 327 (1951).
[CrossRef]

Moss, R. A.

R. A. Moss, W. E. Loomis, Plant Physiol. 27, 370 (1952).
[CrossRef] [PubMed]

Obaton, F.

F. Obaton, Compt. Rend. 218, 721 (1944).

Rabideau, G. S.

G. S. Rabideau, C. S. French, A. S. Holt, Am. J. Botan. 33, 769 (1946).
[CrossRef]

Schleter, J. C.

H. J. Keegan, J. C. Schleter, M. A. Belknap, J. Res. Natl. Bur. Std. 67A, 572 (1963); J. Opt. Soc. Am. 54, 69 (1964).

H. J. Keegan, J. C. Schleter, D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[CrossRef]

Shulgin, I. A.

A. F. Kleshnin, I. A. Shulgin, Dokl. Akad. Nauk. SSSR (Botan. Sci. Sect.) 125, 1158 (1959).

Shull, C. A.

C. A. Shull, Botan. Gaz. 87, 583 (1929).
[CrossRef]

Smith, H. C. J.

H. C. J. Smith, V. M. K. Young, in Radiation Biology, A. Hollaender, ed. (McGraw-Hill, New York, 1956), Chap.7, pp. 393–442.

Stoll, A.

R. Willstätter, A. Stoll, Untersuchungen über chlorophyll, (Springer, Berlin, 1913), English translation by F. M. Shertz, A. R. Mertz, 1928.

Tantraporn, W.

D. M. Gates, W. Tantraporn, Science 115, 613 (1952).
[CrossRef] [PubMed]

Tibbals, E. C.

D. M. Gates, E. C. Tibbals, F. Kreith, Am. J. Botan. (to be published).

Willstätter, R.

R. Willstätter, A. Stoll, Untersuchungen über chlorophyll, (Springer, Berlin, 1913), English translation by F. M. Shertz, A. R. Mertz, 1928.

Young, V. M. K.

C. S. French, V. M. K. Young, in Radiation Biology, A. Hollaender, ed. (McGraw-Hill, New York, 1956), Chap. 6, pp. 343–391.

H. C. J. Smith, V. M. K. Young, in Radiation Biology, A. Hollaender, ed. (McGraw-Hill, New York, 1956), Chap.7, pp. 393–442.

Am. J. Botan.

G. S. Rabideau, C. S. French, A. S. Holt, Am. J. Botan. 33, 769 (1946).
[CrossRef]

W. D. Billings, R. J. Morris, Am. J. Botan. 38, 327 (1951).
[CrossRef]

D. M. Gates, C. M. Benedict, Am. J. Botan. 50, 563 (1963).
[CrossRef]

Am. Sci.

D. M. Gates, Am. Sci. 51, 327 (1963).

Botan. Gaz.

C. A. Shull, Botan. Gaz. 87, 583 (1929).
[CrossRef]

Compt. Rend.

F. Obaton, Compt. Rend. 218, 721 (1944).

Dokl. Akad. Nauk. SSSR (Botan. Sci. Sect.)

A. F. Kleshnin, I. A. Shulgin, Dokl. Akad. Nauk. SSSR (Botan. Sci. Sect.) 125, 1158 (1959).

J. Opt. Soc. Am.

J. Res. Natl. Bur. Std.

H. J. Keegan, J. C. Schleter, D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[CrossRef]

H. J. Keegan, J. C. Schleter, M. A. Belknap, J. Res. Natl. Bur. Std. 67A, 572 (1963); J. Opt. Soc. Am. 54, 69 (1964).

H. J. McNicholas, J. Res. Natl. Bur. Std. 7, 171 (1931).

Plant Physiol.

R. A. Moss, W. E. Loomis, Plant Physiol. 27, 370 (1952).
[CrossRef] [PubMed]

Science

D. M. Gates, W. Tantraporn, Science 115, 613 (1952).
[CrossRef] [PubMed]

M. Calvin, G. M. Androes, Science 138, 867 (1962).
[CrossRef] [PubMed]

P. Latimer, Science 127, 29 (1958).
[CrossRef] [PubMed]

Trans. Am. Microscop. Soc.

E. S. Clements, Trans. Am. Microscop. Soc. 26, 19 (1904).
[CrossRef]

Other

C. S. French, V. M. K. Young, in Radiation Biology, A. Hollaender, ed. (McGraw-Hill, New York, 1956), Chap. 6, pp. 343–391.

C. S. French, in Encyclopedia of Plant Physiology, W. Ruhland, ed. (Springer, Berlin, 1960), pp. 252–297.

W. Clark, Photography by Infrared (Wiley, New York, 1946), 2nd ed., 472 pp.

E. L. Krinov, “Spectral reflectance properties of natural formations”, Area Methods Laboratory, Academy of Sciences, USSR. Technical translation TT-439 by E. Belkov, National Research Council of Canada, Ottawa, 268 pp. (1953).

P. J. C. Kuiper, Plant Physiol. (submitted).

R. Willstätter, A. Stoll, Untersuchungen über chlorophyll, (Springer, Berlin, 1913), English translation by F. M. Shertz, A. R. Mertz, 1928.

R. M. Evans, An Introduction to Color (Wiley, New York, 1948), p. 92.

H. C. J. Smith, V. M. K. Young, in Radiation Biology, A. Hollaender, ed. (McGraw-Hill, New York, 1956), Chap.7, pp. 393–442.

D. M. Gates, E. C. Tibbals, F. Kreith, Am. J. Botan. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross section of a Mimulus cardinalis leaf showing possible paths for light rays which are critically reflected at cell walls within the leaf. The chloroplasts can be seen within the mesophyll cells. (b) Specific absorption versus frequency of the principal plant pigments and liquid water. (c) Spectral distribution of direct sunlight on a horizontal surface, cloud light, skylight, and a representative curve for light transmitted through vegetation. (d) The spectral absorption of a green Hedera helix leaf and of an albino leaf from the same plant. Data supplied by Olle Bjorkman, Carnegie Institution of Washington (private communication).

Fig. 2
Fig. 2

(a) Spectral reflectance and transmittance as a function of the wavelength of a red rose petal and a cottonwood leaf, and spectral reflectance of a magnolia petal to show the influence of pigmentation of the spectral properties of the plant. (b) Evolution of the spectral reflectance of a leaf during the growing season for the dates shown. The corresponding leaf expansion can be seen by the leaf outlines shown. Changes in leaf pigmentation are evident from the curves. (c) The spectral reflectance, transmittance, and absorptance of leaves of Ilex cornuta which appear very shiny when illuminated with visible light. (d) The spectral reflectance, transmittance, and absorptance of leaves of Mimulus cardinalis (Los Trancos) race. These leaves are thin and light green in color.

Fig. 3
Fig. 3

(a) The spectral reflectance, transmittance, and absorptance of leaves of Populus deltoides, a moderately thin, light colored leaf. (b) The spectral reflectance, transmittance, and absorptance of leaves of Nerium oleander, a thick green leaf. (c) The spectral reflectance, transmittance, and absorptance of leaves of Raphiolepis ovata, a thick dark green leaf. (d) The spectral absorptance and reflectance of the stems of desert succulent plants. The transmittance is zero.

Fig. 4
Fig. 4

(a) The spectral absorptance and reflectance of the stems and leaves of desert plants. Opuntia is the prickly pear cactus without an abundance of thorns. The Mammillaria is a cushion cactus completely covered with a dense layer of thorns. The Larrea is the creosote bush with small dark opaque leaves. The transmittance of all plants is zero. (b) The spectral distribution of absorbed incident solar radiation by two desert species of plants. (c) The spectral distribution of absorbed incident solar radiation by two desert species of plants. The Opuntia laevis has very few thorns and the Mammillaria lasiacantha has a dense covering of thorns. (d) The spectral distribution of absorbed incident solar radiation by Populus deltoides (cottonwood) for clear sky and overcast sky.

Fig. 5
Fig. 5

(a) Chromaticity diagram of the International Commission on Illumination (CIE) for the colors of autumn leaves for CIE Source C (representative of average daylight). (b) The spectral reflectance of selected lichens as a function of the wavelength. Each specimen was in its normally dry state as collected in the field. The change in the spectral reflectance of the lichen when soaked in water is shown for one example.

Tables (1)

Tables Icon

Table I Absorbed Energy and Mean Absorptance Values for Various Plants Exposed to Incident Solar Energy of 1.20 cal cm−2 min−1 and to Cloudy Day Sunlight of 0.38 cal cm−2 min−1 with the Spectral Distributions Shown in Fig. 1(c)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A λ = 1 - ( T λ + R λ ) ,

Metrics