Abstract

Measurements were made of optical path uniformity, chromium concentration, fluorescence linewidth, large-angle scatter, and laser threshold on 39 flame fusion rubies. Results show that index of refraction variation is explainable by variation of chrome concentration and wander of the optic axis. Residual stress plays little role in optical defects, but may broaden the 77°K linewidth. Optical quality of lasers cut from regions of boules selected by interferometry remains constant after cutting, but warping destroys their parallelism. Threshold increases with chromium concentration, indicating that the rods are optically thick at the pumping bands. Threshold is not correlated with other optical properties, however.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hutcheson, Final Rept. Contract DA36–039–SC–8909 (USAELRDL) Linde Company Division of Union Carbide Corporation, 1May1962–31May1963.
  2. D. M. Dodd, D. L. Wood, R. L. Barns, J. Appl. Phys. 35, 1183 (1964).
    [CrossRef]
  3. T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, J. Evtuhov, Phys. Rev. 123, 1151 (1961).
    [CrossRef]
  4. G. W. Dueker, R. C. Linares, Final Rept. Contract DA36–039–SC–89091 (USAELRDL). The Perkin-Elmer Corporation, 1May1962–31August1963.
  5. M. Hercher, Doctoral Dissertation, Institute of Optics, University of Rochester (1963).
  6. R. L. Barns, in Proceedings of Technical Conference on Metallurgy of Advanced Electronic Materials, G. E. Brock, ed. (Interscience, New York, 1962).
  7. J. A. Mandarino, Am. Mineralologist 44, 961 (1961).
  8. E. N. Bunting, J. Res. Nat. Bur. Stnd. 6, 1931, RP317.
  9. A. L. Schawlow, in Quantum Electronics, J. R. Singer, ed. (Columbia University Press, New York, 1961), p. 50.
  10. F. Gires, G. Mayer, in Quantum Electronics, III, ed. P. Grivet, N. Bloembergen (Columbia, New York, 1964).
  11. A. Yariv, Proc. IEEE 51, 1723 (1963).
    [CrossRef]
  12. I. J. D’Haenens, J. Evtuhov, in Quantum Electronics, III, ed. P. Grivet, N. Bloembergen (Columbia, New York, 1964.)

1964

D. M. Dodd, D. L. Wood, R. L. Barns, J. Appl. Phys. 35, 1183 (1964).
[CrossRef]

1963

A. Yariv, Proc. IEEE 51, 1723 (1963).
[CrossRef]

1961

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, J. Evtuhov, Phys. Rev. 123, 1151 (1961).
[CrossRef]

J. A. Mandarino, Am. Mineralologist 44, 961 (1961).

1931

E. N. Bunting, J. Res. Nat. Bur. Stnd. 6, 1931, RP317.

Asawa, C. K.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, J. Evtuhov, Phys. Rev. 123, 1151 (1961).
[CrossRef]

Barns, R. L.

D. M. Dodd, D. L. Wood, R. L. Barns, J. Appl. Phys. 35, 1183 (1964).
[CrossRef]

R. L. Barns, in Proceedings of Technical Conference on Metallurgy of Advanced Electronic Materials, G. E. Brock, ed. (Interscience, New York, 1962).

Bunting, E. N.

E. N. Bunting, J. Res. Nat. Bur. Stnd. 6, 1931, RP317.

D’Haenens, I. J.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, J. Evtuhov, Phys. Rev. 123, 1151 (1961).
[CrossRef]

I. J. D’Haenens, J. Evtuhov, in Quantum Electronics, III, ed. P. Grivet, N. Bloembergen (Columbia, New York, 1964.)

Dodd, D. M.

D. M. Dodd, D. L. Wood, R. L. Barns, J. Appl. Phys. 35, 1183 (1964).
[CrossRef]

Dueker, G. W.

G. W. Dueker, R. C. Linares, Final Rept. Contract DA36–039–SC–89091 (USAELRDL). The Perkin-Elmer Corporation, 1May1962–31August1963.

Evtuhov, J.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, J. Evtuhov, Phys. Rev. 123, 1151 (1961).
[CrossRef]

I. J. D’Haenens, J. Evtuhov, in Quantum Electronics, III, ed. P. Grivet, N. Bloembergen (Columbia, New York, 1964.)

Gires, F.

F. Gires, G. Mayer, in Quantum Electronics, III, ed. P. Grivet, N. Bloembergen (Columbia, New York, 1964).

Hercher, M.

M. Hercher, Doctoral Dissertation, Institute of Optics, University of Rochester (1963).

Hoskins, R. H.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, J. Evtuhov, Phys. Rev. 123, 1151 (1961).
[CrossRef]

Hutcheson, R.

R. Hutcheson, Final Rept. Contract DA36–039–SC–8909 (USAELRDL) Linde Company Division of Union Carbide Corporation, 1May1962–31May1963.

Linares, R. C.

G. W. Dueker, R. C. Linares, Final Rept. Contract DA36–039–SC–89091 (USAELRDL). The Perkin-Elmer Corporation, 1May1962–31August1963.

Maiman, T. H.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, J. Evtuhov, Phys. Rev. 123, 1151 (1961).
[CrossRef]

Mandarino, J. A.

J. A. Mandarino, Am. Mineralologist 44, 961 (1961).

Mayer, G.

F. Gires, G. Mayer, in Quantum Electronics, III, ed. P. Grivet, N. Bloembergen (Columbia, New York, 1964).

Schawlow, A. L.

A. L. Schawlow, in Quantum Electronics, J. R. Singer, ed. (Columbia University Press, New York, 1961), p. 50.

Wood, D. L.

D. M. Dodd, D. L. Wood, R. L. Barns, J. Appl. Phys. 35, 1183 (1964).
[CrossRef]

Yariv, A.

A. Yariv, Proc. IEEE 51, 1723 (1963).
[CrossRef]

Am. Mineralologist

J. A. Mandarino, Am. Mineralologist 44, 961 (1961).

J. Appl. Phys.

D. M. Dodd, D. L. Wood, R. L. Barns, J. Appl. Phys. 35, 1183 (1964).
[CrossRef]

J. Res. Nat. Bur. Stnd.

E. N. Bunting, J. Res. Nat. Bur. Stnd. 6, 1931, RP317.

Phys. Rev.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, J. Evtuhov, Phys. Rev. 123, 1151 (1961).
[CrossRef]

Proc. IEEE

A. Yariv, Proc. IEEE 51, 1723 (1963).
[CrossRef]

Other

I. J. D’Haenens, J. Evtuhov, in Quantum Electronics, III, ed. P. Grivet, N. Bloembergen (Columbia, New York, 1964.)

R. Hutcheson, Final Rept. Contract DA36–039–SC–8909 (USAELRDL) Linde Company Division of Union Carbide Corporation, 1May1962–31May1963.

G. W. Dueker, R. C. Linares, Final Rept. Contract DA36–039–SC–89091 (USAELRDL). The Perkin-Elmer Corporation, 1May1962–31August1963.

M. Hercher, Doctoral Dissertation, Institute of Optics, University of Rochester (1963).

R. L. Barns, in Proceedings of Technical Conference on Metallurgy of Advanced Electronic Materials, G. E. Brock, ed. (Interscience, New York, 1962).

A. L. Schawlow, in Quantum Electronics, J. R. Singer, ed. (Columbia University Press, New York, 1961), p. 50.

F. Gires, G. Mayer, in Quantum Electronics, III, ed. P. Grivet, N. Bloembergen (Columbia, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Interferogram of boule No. 39 perpendicular to growth axis shows index shifts associated with color banding.

Fig. 2
Fig. 2

Interferograms of rod No. 02; c axis vertical; (a) ordinary ray, (b) movement of fringes toward higher index region; (c) extraordinary ray.

Fig. 3
Fig. 3

Interferograms of boule and rod No. 38; c axis vertical; (a) ordinary ray; (b) extraordinary ray; (c) rod from center, ordinary ray; (d) movement of fringes toward higher index region; (e) rod from center, extraordinary ray.

Fig. 4
Fig. 4

Interferograms of boule and rod No. 40; c axis vertical; (a) ordinary ray; (b) rod from circled area, ordinary ray. Shows preservation of fringe pattern when rod is cut from boule. (c) movement of fringes toward higher index region; (d) rod from circled area, extraordinary ray.

Fig. 5
Fig. 5

Interferograms of boule and rod No. 26; c axis vertical; (a) extraordinary ray; shows high index skin; (b) rod from circled area, ordinary ray; (c) movement of fringes toward higher index region; (d) rod from circled area, extraordinary ray.

Fig. 6
Fig. 6

Interferograms of boule and rod No. 34; c axis perpendicular to page; (a) boule, unpolarized source; (b) rod from circled area, polarization of source horizontal; (c) movement of fringes toward higher index region; (d) rod from circled area, polarization of source vertical. Shows ragged fringes typical of zero-degree grown crystals.

Fig. 7
Fig. 7

Interferograms of boule and rod No. 36; c axis vertical; (a) ordinary ray; (b) extraordinary ray; (c) rod from circled area, ordinary ray; (d) movement of fringes toward higher index region; (e) rod from circled area, extraordinary ray. Shows the substantial difference between fringes in ordinary ray and extraordinary ray interferograms caused by axis wander.

Fig. 8
Fig. 8

Contour map of optical path length.

Fig. 9
Fig. 9

Optical schematic for measuring equivalent wedge angle.

Fig. 10
Fig. 10

Optical schematic for measuring large-angle scatter.

Fig. 11
Fig. 11

Etalon and holder.

Fig. 12
Fig. 12

Optical schematic of scanning Fabry-Perot interferometer.

Fig. 13
Fig. 13

Typical R1 scan.

Fig. 14
Fig. 14

(a) R1 line profile of unstrained ruby; (b) same ruby under compression parallel to c axis.

Fig. 15
Fig. 15

Linewidth of rods as a function of concentration.

Fig. 16
Fig. 16

Delay times to threshold as a function of concentration.

Tables (1)

Tables Icon

Table I Measurements of Rod and Boule Characteristics for 39 Flame-Fusion Ruby Crystals

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ = δ ( n - 1 ) ,
n e θ 2 = n e 2 n o 2 n o 2 sin 2 θ + n e 2 cos 2 θ .
n e = n 0 - , where n o
d n e θ d θ = - sin 2 θ .
Δ n e θ = - sin 2 θ Δ θ .
d n d s < 10 - 6 144 kg / cm 2 = 7 × 10 - 9 kg - 1 cm 2

Metrics