Abstract

An optical resonator is characterized that employs both ultrahigh-reflective coated surfaces and total internal reflection to enable cavity ringdown spectroscopy of surfaces, films, and liquids. The monolithic folded design possesses a polarization-independent finesse that allows polarization-dependent phenomena, such as molecular orientation, to be probed. Although a restricted bandwidth (∼15% of the design wavelength) results from use of reflective coatings, the resonator provides high sensitivity and facile operation. A minimum detectable absorption of 2.2 × 10-6 was obtained for single laser shots by use of multimode excitation at 530 nm with an excimer-pumped, pulsed dye laser.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  2. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998).
    [CrossRef]
  3. K. W. Busch, M. A. Busch, eds., Cavity-Ringdown Spectroscopy (Oxford U. Press, New York, 1999).
    [CrossRef]
  4. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with 6, 7, 8, stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
    [CrossRef]
  5. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  6. M. Moretti, “Ultra-low loss measurements for high-performance optics,” Laser Focus 23, 22–26 (1987).
  7. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
    [CrossRef]
  8. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
    [CrossRef]
  9. A. C. R. Pipino, “Evanescent wave cavity ring-down spectroscopy for ultrasensitive chemical detection,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. De Groot, ed., Proc. SPIE3535, 57–67 (1998).
    [CrossRef]
  10. R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
    [CrossRef]
  11. A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096 (1999).
    [CrossRef]
  12. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  13. N. J. Brown, “Preparation of ultrasmooth surfaces,” Annu. Rev. Mater. Sci. 16, 371–388 (1986).
    [CrossRef]
  14. S. Schiller, “Principles and applications of optical monolithic total internal reflection resonators,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1993).
  15. N. J. Harrick, Internal Reflection Spectroscopy (Interscience, New York, 1967).
  16. Identification of specific commercial products in this paper is provided to specify procedures completely. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that such products have necessarily been identified as the best available for the purpose.
  17. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
    [CrossRef]
  18. D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
    [CrossRef]
  19. I. M. Ward, “Determination of molecular orientation by spectroscopic methods,” in Characterization of Polymers in the Solid State 1: Part A, NMR and Other Spectroscopic Methods, H. H. Kausch, H. G. Zachmann, A. Apicella, eds., Volume 66 of Advances in Polymer Science (Springer-Verlag, Berlin, 1985).
  20. N. L. Thompson, H. M. McConnell, T. P. Burghardt, “Order in supported phospolipid monolayers detected by the dichroism of fluorescence excited by polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
    [CrossRef] [PubMed]
  21. C.-P. Lafrance, A. Nabet, R. E. Prud’homme, M. Pézolet, “On the relationship between the order parameter [P2(cosθ)] and the shape of orientation distributions,” Can. J. Chem. 73, 1497–1505 (1995).
    [CrossRef]
  22. G. Kortum, H. Koffer, “Diffuse reflexionsspektren von absorbiertem jod,” Ber. Bunsenges. Phys. Chem. 67, 67–75 (1963).
  23. A. Charvat, S. A. Kovalenko, B. Abel, “Attenuated total internal reflection spectroscopy with an intracavity laser absorption spectrometer,” Spectrochim. Acta Part A 55, 1553–1567 (1999).
    [CrossRef]
  24. J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1967).
  25. R. K. Iler, Chemistry of Silica (Wiley, New York, 1979).
  26. I. D. Aggarwal, G. Lu, eds., Fluoride Glass Fiber Optics (Academic, Boston, Mass., 1991).

1999 (4)

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096 (1999).
[CrossRef]

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

A. Charvat, S. A. Kovalenko, B. Abel, “Attenuated total internal reflection spectroscopy with an intracavity laser absorption spectrometer,” Spectrochim. Acta Part A 55, 1553–1567 (1999).
[CrossRef]

1998 (1)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998).
[CrossRef]

1997 (2)

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

1995 (2)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

C.-P. Lafrance, A. Nabet, R. E. Prud’homme, M. Pézolet, “On the relationship between the order parameter [P2(cosθ)] and the shape of orientation distributions,” Can. J. Chem. 73, 1497–1505 (1995).
[CrossRef]

1993 (1)

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with 6, 7, 8, stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

1990 (1)

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1987 (1)

M. Moretti, “Ultra-low loss measurements for high-performance optics,” Laser Focus 23, 22–26 (1987).

1986 (1)

N. J. Brown, “Preparation of ultrasmooth surfaces,” Annu. Rev. Mater. Sci. 16, 371–388 (1986).
[CrossRef]

1984 (1)

N. L. Thompson, H. M. McConnell, T. P. Burghardt, “Order in supported phospolipid monolayers detected by the dichroism of fluorescence excited by polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

1963 (1)

G. Kortum, H. Koffer, “Diffuse reflexionsspektren von absorbiertem jod,” Ber. Bunsenges. Phys. Chem. 67, 67–75 (1963).

Abel, B.

A. Charvat, S. A. Kovalenko, B. Abel, “Attenuated total internal reflection spectroscopy with an intracavity laser absorption spectrometer,” Spectrochim. Acta Part A 55, 1553–1567 (1999).
[CrossRef]

Ashfold, M. N. R.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998).
[CrossRef]

Bohn, P. W.

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

Brown, N. J.

N. J. Brown, “Preparation of ultrasmooth surfaces,” Annu. Rev. Mater. Sci. 16, 371–388 (1986).
[CrossRef]

Burghardt, T. P.

N. L. Thompson, H. M. McConnell, T. P. Burghardt, “Order in supported phospolipid monolayers detected by the dichroism of fluorescence excited by polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

Calvert, J. G.

J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1967).

Charvat, A.

A. Charvat, S. A. Kovalenko, B. Abel, “Attenuated total internal reflection spectroscopy with an intracavity laser absorption spectrometer,” Spectrochim. Acta Part A 55, 1553–1567 (1999).
[CrossRef]

Cropek, D. M.

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Engeln, R.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Interscience, New York, 1967).

Hodges, J. T.

Hudgens, J. W.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

Huie, R. E.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Iler, R. K.

R. K. Iler, Chemistry of Silica (Wiley, New York, 1979).

Koffer, H.

G. Kortum, H. Koffer, “Diffuse reflexionsspektren von absorbiertem jod,” Ber. Bunsenges. Phys. Chem. 67, 67–75 (1963).

Kortum, G.

G. Kortum, H. Koffer, “Diffuse reflexionsspektren von absorbiertem jod,” Ber. Bunsenges. Phys. Chem. 67, 67–75 (1963).

Kovalenko, S. A.

A. Charvat, S. A. Kovalenko, B. Abel, “Attenuated total internal reflection spectroscopy with an intracavity laser absorption spectrometer,” Spectrochim. Acta Part A 55, 1553–1567 (1999).
[CrossRef]

Lafrance, C.-P.

C.-P. Lafrance, A. Nabet, R. E. Prud’homme, M. Pézolet, “On the relationship between the order parameter [P2(cosθ)] and the shape of orientation distributions,” Can. J. Chem. 73, 1497–1505 (1995).
[CrossRef]

Lehmann, K. K.

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with 6, 7, 8, stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Looney, J. P.

McConnell, H. M.

N. L. Thompson, H. M. McConnell, T. P. Burghardt, “Order in supported phospolipid monolayers detected by the dichroism of fluorescence excited by polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

Meijer, G.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Moretti, M.

M. Moretti, “Ultra-low loss measurements for high-performance optics,” Laser Focus 23, 22–26 (1987).

Nabet, A.

C.-P. Lafrance, A. Nabet, R. E. Prud’homme, M. Pézolet, “On the relationship between the order parameter [P2(cosθ)] and the shape of orientation distributions,” Can. J. Chem. 73, 1497–1505 (1995).
[CrossRef]

Newman, S. M.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998).
[CrossRef]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Orr-Ewing, A. J.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998).
[CrossRef]

Pézolet, M.

C.-P. Lafrance, A. Nabet, R. E. Prud’homme, M. Pézolet, “On the relationship between the order parameter [P2(cosθ)] and the shape of orientation distributions,” Can. J. Chem. 73, 1497–1505 (1995).
[CrossRef]

Pipino, A. C. R.

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096 (1999).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

A. C. R. Pipino, “Evanescent wave cavity ring-down spectroscopy for ultrasensitive chemical detection,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. De Groot, ed., Proc. SPIE3535, 57–67 (1998).
[CrossRef]

Pitts, J. N.

J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1967).

Prud’homme, R. E.

C.-P. Lafrance, A. Nabet, R. E. Prud’homme, M. Pézolet, “On the relationship between the order parameter [P2(cosθ)] and the shape of orientation distributions,” Can. J. Chem. 73, 1497–1505 (1995).
[CrossRef]

Romanini, D.

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with 6, 7, 8, stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Schiller, S.

S. Schiller, “Principles and applications of optical monolithic total internal reflection resonators,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1993).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Thompson, N. L.

N. L. Thompson, H. M. McConnell, T. P. Burghardt, “Order in supported phospolipid monolayers detected by the dichroism of fluorescence excited by polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

van Roij, A. J. A.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

van Zee, R. D.

von Helden, G.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Ward, I. M.

I. M. Ward, “Determination of molecular orientation by spectroscopic methods,” in Characterization of Polymers in the Solid State 1: Part A, NMR and Other Spectroscopic Methods, H. H. Kausch, H. G. Zachmann, A. Apicella, eds., Volume 66 of Advances in Polymer Science (Springer-Verlag, Berlin, 1985).

Wheeler, M. D.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998).
[CrossRef]

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

N. J. Brown, “Preparation of ultrasmooth surfaces,” Annu. Rev. Mater. Sci. 16, 371–388 (1986).
[CrossRef]

Appl. Opt. (1)

Ber. Bunsenges. Phys. Chem. (1)

G. Kortum, H. Koffer, “Diffuse reflexionsspektren von absorbiertem jod,” Ber. Bunsenges. Phys. Chem. 67, 67–75 (1963).

Biophys. J. (1)

N. L. Thompson, H. M. McConnell, T. P. Burghardt, “Order in supported phospolipid monolayers detected by the dichroism of fluorescence excited by polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984).
[CrossRef] [PubMed]

Can. J. Chem. (1)

C.-P. Lafrance, A. Nabet, R. E. Prud’homme, M. Pézolet, “On the relationship between the order parameter [P2(cosθ)] and the shape of orientation distributions,” Can. J. Chem. 73, 1497–1505 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997).
[CrossRef]

J. Chem. Phys. (3)

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with 6, 7, 8, stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998).
[CrossRef]

J. Phys. Chem. (1)

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

Laser Focus (1)

M. Moretti, “Ultra-low loss measurements for high-performance optics,” Laser Focus 23, 22–26 (1987).

Phys. Rev. Lett. (1)

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096 (1999).
[CrossRef]

Rev. Sci. Instrum. (2)

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Spectrochim. Acta Part A (1)

A. Charvat, S. A. Kovalenko, B. Abel, “Attenuated total internal reflection spectroscopy with an intracavity laser absorption spectrometer,” Spectrochim. Acta Part A 55, 1553–1567 (1999).
[CrossRef]

Other (10)

J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1967).

R. K. Iler, Chemistry of Silica (Wiley, New York, 1979).

I. D. Aggarwal, G. Lu, eds., Fluoride Glass Fiber Optics (Academic, Boston, Mass., 1991).

A. C. R. Pipino, “Evanescent wave cavity ring-down spectroscopy for ultrasensitive chemical detection,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. De Groot, ed., Proc. SPIE3535, 57–67 (1998).
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

K. W. Busch, M. A. Busch, eds., Cavity-Ringdown Spectroscopy (Oxford U. Press, New York, 1999).
[CrossRef]

I. M. Ward, “Determination of molecular orientation by spectroscopic methods,” in Characterization of Polymers in the Solid State 1: Part A, NMR and Other Spectroscopic Methods, H. H. Kausch, H. G. Zachmann, A. Apicella, eds., Volume 66 of Advances in Polymer Science (Springer-Verlag, Berlin, 1985).

S. Schiller, “Principles and applications of optical monolithic total internal reflection resonators,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1993).

N. J. Harrick, Internal Reflection Spectroscopy (Interscience, New York, 1967).

Identification of specific commercial products in this paper is provided to specify procedures completely. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that such products have necessarily been identified as the best available for the purpose.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a monolithic optical cavity that permits CRDS of surfaces, films, and liquids. Surfaces S1 and S3 of the monolithic solid are coated with an ultrahigh-reflective dielectric coating, as employed in gas-phase CRDS cavities. For n 1 > n 2, surface S2 becomes a TIR mirror if θ i > θ c = sin-1 (n 2/n 1). The three-mirror system forms a stable optical resonator for a judicious choice of mirror separation and spherical radius of curvature R c given by inequality (2). The evanescent wave at the TIR surface probes optical absorption of an ambient medium through a change in ringdown time of the cavity.

Fig. 2
Fig. 2

Single-shot ringdown transients for three wavelengths for a fused-silica, monolithic cavity as in Fig. 1 with L = 3.0 cm, R c = 7.5 cm, and θ i = 45°. An excimer-pumped, pulsed dye laser was employed as the excitation source. The transients were detected with a photomultiplier tube and a digital oscilloscope, which applied a 25-MHZ bandpass filter. The inset defines the in-plane (P) and out-of-plane (S) polarizations and the coordinate system at the TIR surface.

Fig. 3
Fig. 3

Intrinsic loss and ringdown time are shown on opposite axes as a function of wavelength for the monolithic cavity. The useful bandwidth of the resonator is approximately 80 nm, limited by the coating reflectivity. A minimum loss of 220 × 10-6 occurs at 530 nm, which is determined mainly by the bulk attenuation of fused silica. The circles indicate S polarization; triangles indicate P polarization. Note that the intrinsic losses for the two polarizations are nearly equal.

Fig. 4
Fig. 4

Optical losses at 540 nm for S- and P-polarized cavity modes as a function of time during exposure of the TIR surface to I2 vapor at room temperature. Inset (a) indicates the geometry for sealing the TIR surface to the I2 source by an O ring. The S-polarized optical loss is found to be much larger than the P-polarized case. Because the electric field associated with an S-polarized mode lies entirely in the plane of the TIR surface, the ratio of absorbances suggests that surface-bound I2 lies flat on the surface [Θ = 90° in the inset (b)] as discussed in the text.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τω=tr0ω+absω,
01- LRc cos θi21
ρΘ=IyIx+2Iz cot Θ,
ρ=Iy1+d20Ix+Iz+2Iz-Ixd20,

Metrics