Abstract

Backscatter absorption gas imaging (BAGI) is a technique that uses infrared active imaging to generate real-time video imagery of gas plumes. We describe a method that employs imaging at two wavelengths (absorbed and not absorbed by the gas to be detected) to allow wavelength-differential BAGI. From the frames collected at each wavelength, an absorbance image is created that displays the differential absorbance of the atmosphere between the imager and the backscatter surface. This is analogous to a two-dimensional topographic differential absorption lidar or differential optical absorption spectroscopy measurement. Gas plumes are displayed, but the topographic scene image is removed. This allows a more effective display of the plume image, thus ensuring detection under a wide variety of conditions. The instrument used to generate differential BAGI is described. Data generated by the instrument are presented and analyzed to estimate sensitivity.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. McRae, T. J. Kulp, “Backscatter absorption gas imaging: a new technique for gas visualization,” Appl. Opt. 32, 4037–4050 (1993).
    [PubMed]
  2. T. J. Kulp, P. E. Powers, R. Kennedy, “Remote imaging of controlled gas releases using active and passive infrared imaging systems,” in Infrared Technology and Applications XXIII, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE3061, 269–278 (1997).
    [CrossRef]
  3. T. J. Kulp, R. Kennedy, M. Delong, D. Garvis, J. Stahovec, “The development and Testing of a Backscatter Absorption Gas Imaging System Capable of Imaging at a Range of 300 m,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 204–213 (1993).
    [CrossRef]
  4. T. G. McRae, L. L. Altpeter, “Application of backscatter absorption gas imaging to natural gas leak detection,” in Proceedings of the 1992 International Gas Research Conference 2, H. A. Thompson, ed. (Government Institutes, Inc., Rockville, Md., 1993), pp. 1312–1322.
  5. T. J. Kulp, P. E. Powers, R. Kennedy, “The development of a laser-illuminated infrared imager for natural gas leak detection,” in Proceedings of the U.S. Department of Energy Natural Gas Conference (U.S. Department of Energy, Federal Energy Technology Center, Morgantown, W.Va., 1997), paper 2.7.
  6. T. J. Kulp, P. Powers, R. Kennedy, U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37, 3912–3922 (1998).
    [CrossRef]
  7. W. B. Grant, “Effect of differential spectral reflectance on DIAL measurements using topographic targets,” Appl. Opt. 21, 2390–2394 (1982).
    [CrossRef] [PubMed]
  8. R. L. Byer, M. Garbuny, “Pollutant detection by absorption using Mie scattering and topographic targets as retroreflectors,” Appl. Opt. 12, 1496–1505 (1973).
    [CrossRef] [PubMed]
  9. W. B. Grant, “He–Ne and cw CO2 laser long-path systems for gas detection,” Appl. Opt. 25, 709–719 (1986).
    [CrossRef] [PubMed]
  10. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), Chap. 2.
  11. M. J. T. Milton, T. J. McIlveen, D. C. Hanna, P. T. Woods, “A high-gain optical parametric amplifier tunable between 3.27 and 3.65 µm,” Opt. Commun. 93, 186–190 (1992).
    [CrossRef]
  12. F. M. Dickey, B. D. O’Neil, “Multifaceted laser beam integrators: general formulation and design concepts,” Opt. Eng. 27, 999–1007 (1988).
    [CrossRef]
  13. J. DiBenedetto, G. Capelle, S. Lutz, “Uniform field laser illumination for remote sensing,” in Earth and Atmospheric Remote Sensing, R. J. Curran, J. A. Smith, K. Watson, eds., Proc. SPIE1492, 115–125 (1991).
    [CrossRef]
  14. E. P. MacKerrow, M. J. Schmitt, “Measurements of integrated speckle statistics for CO2 lidar returns from a moving, nonuniform, hard target,” Appl. Opt. 36, 6921–6937 (1997).
    [CrossRef]
  15. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt. 21, 3377–3383 (1982).
    [CrossRef] [PubMed]
  16. N. Menyuk, D. K. Killinger, “Assessment of relative error sources in IR DIAL measurement accuracy,” Appl. Opt. 22, 2690–2698 (1983).
    [CrossRef] [PubMed]

1998 (1)

1997 (1)

1993 (1)

1992 (1)

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, P. T. Woods, “A high-gain optical parametric amplifier tunable between 3.27 and 3.65 µm,” Opt. Commun. 93, 186–190 (1992).
[CrossRef]

1988 (1)

F. M. Dickey, B. D. O’Neil, “Multifaceted laser beam integrators: general formulation and design concepts,” Opt. Eng. 27, 999–1007 (1988).
[CrossRef]

1986 (1)

1983 (1)

1982 (2)

1973 (1)

Altpeter, L. L.

T. G. McRae, L. L. Altpeter, “Application of backscatter absorption gas imaging to natural gas leak detection,” in Proceedings of the 1992 International Gas Research Conference 2, H. A. Thompson, ed. (Government Institutes, Inc., Rockville, Md., 1993), pp. 1312–1322.

Byer, R. L.

Capelle, G.

J. DiBenedetto, G. Capelle, S. Lutz, “Uniform field laser illumination for remote sensing,” in Earth and Atmospheric Remote Sensing, R. J. Curran, J. A. Smith, K. Watson, eds., Proc. SPIE1492, 115–125 (1991).
[CrossRef]

Delong, M.

T. J. Kulp, R. Kennedy, M. Delong, D. Garvis, J. Stahovec, “The development and Testing of a Backscatter Absorption Gas Imaging System Capable of Imaging at a Range of 300 m,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 204–213 (1993).
[CrossRef]

DiBenedetto, J.

J. DiBenedetto, G. Capelle, S. Lutz, “Uniform field laser illumination for remote sensing,” in Earth and Atmospheric Remote Sensing, R. J. Curran, J. A. Smith, K. Watson, eds., Proc. SPIE1492, 115–125 (1991).
[CrossRef]

Dickey, F. M.

F. M. Dickey, B. D. O’Neil, “Multifaceted laser beam integrators: general formulation and design concepts,” Opt. Eng. 27, 999–1007 (1988).
[CrossRef]

Garbuny, M.

Garvis, D.

T. J. Kulp, R. Kennedy, M. Delong, D. Garvis, J. Stahovec, “The development and Testing of a Backscatter Absorption Gas Imaging System Capable of Imaging at a Range of 300 m,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 204–213 (1993).
[CrossRef]

Goers, U. B.

Grant, W. B.

Hanna, D. C.

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, P. T. Woods, “A high-gain optical parametric amplifier tunable between 3.27 and 3.65 µm,” Opt. Commun. 93, 186–190 (1992).
[CrossRef]

Kennedy, R.

T. J. Kulp, P. Powers, R. Kennedy, U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37, 3912–3922 (1998).
[CrossRef]

T. J. Kulp, P. E. Powers, R. Kennedy, “The development of a laser-illuminated infrared imager for natural gas leak detection,” in Proceedings of the U.S. Department of Energy Natural Gas Conference (U.S. Department of Energy, Federal Energy Technology Center, Morgantown, W.Va., 1997), paper 2.7.

T. J. Kulp, R. Kennedy, M. Delong, D. Garvis, J. Stahovec, “The development and Testing of a Backscatter Absorption Gas Imaging System Capable of Imaging at a Range of 300 m,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 204–213 (1993).
[CrossRef]

T. J. Kulp, P. E. Powers, R. Kennedy, “Remote imaging of controlled gas releases using active and passive infrared imaging systems,” in Infrared Technology and Applications XXIII, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE3061, 269–278 (1997).
[CrossRef]

Killinger, D. K.

Kulp, T. J.

T. J. Kulp, P. Powers, R. Kennedy, U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37, 3912–3922 (1998).
[CrossRef]

T. G. McRae, T. J. Kulp, “Backscatter absorption gas imaging: a new technique for gas visualization,” Appl. Opt. 32, 4037–4050 (1993).
[PubMed]

T. J. Kulp, P. E. Powers, R. Kennedy, “Remote imaging of controlled gas releases using active and passive infrared imaging systems,” in Infrared Technology and Applications XXIII, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE3061, 269–278 (1997).
[CrossRef]

T. J. Kulp, R. Kennedy, M. Delong, D. Garvis, J. Stahovec, “The development and Testing of a Backscatter Absorption Gas Imaging System Capable of Imaging at a Range of 300 m,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 204–213 (1993).
[CrossRef]

T. J. Kulp, P. E. Powers, R. Kennedy, “The development of a laser-illuminated infrared imager for natural gas leak detection,” in Proceedings of the U.S. Department of Energy Natural Gas Conference (U.S. Department of Energy, Federal Energy Technology Center, Morgantown, W.Va., 1997), paper 2.7.

Lutz, S.

J. DiBenedetto, G. Capelle, S. Lutz, “Uniform field laser illumination for remote sensing,” in Earth and Atmospheric Remote Sensing, R. J. Curran, J. A. Smith, K. Watson, eds., Proc. SPIE1492, 115–125 (1991).
[CrossRef]

MacKerrow, E. P.

McIlveen, T. J.

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, P. T. Woods, “A high-gain optical parametric amplifier tunable between 3.27 and 3.65 µm,” Opt. Commun. 93, 186–190 (1992).
[CrossRef]

McRae, T. G.

T. G. McRae, T. J. Kulp, “Backscatter absorption gas imaging: a new technique for gas visualization,” Appl. Opt. 32, 4037–4050 (1993).
[PubMed]

T. G. McRae, L. L. Altpeter, “Application of backscatter absorption gas imaging to natural gas leak detection,” in Proceedings of the 1992 International Gas Research Conference 2, H. A. Thompson, ed. (Government Institutes, Inc., Rockville, Md., 1993), pp. 1312–1322.

Menyuk, C. R.

Menyuk, N.

Milton, M. J. T.

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, P. T. Woods, “A high-gain optical parametric amplifier tunable between 3.27 and 3.65 µm,” Opt. Commun. 93, 186–190 (1992).
[CrossRef]

O’Neil, B. D.

F. M. Dickey, B. D. O’Neil, “Multifaceted laser beam integrators: general formulation and design concepts,” Opt. Eng. 27, 999–1007 (1988).
[CrossRef]

Platt, U.

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), Chap. 2.

Powers, P.

Powers, P. E.

T. J. Kulp, P. E. Powers, R. Kennedy, “The development of a laser-illuminated infrared imager for natural gas leak detection,” in Proceedings of the U.S. Department of Energy Natural Gas Conference (U.S. Department of Energy, Federal Energy Technology Center, Morgantown, W.Va., 1997), paper 2.7.

T. J. Kulp, P. E. Powers, R. Kennedy, “Remote imaging of controlled gas releases using active and passive infrared imaging systems,” in Infrared Technology and Applications XXIII, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE3061, 269–278 (1997).
[CrossRef]

Schmitt, M. J.

Stahovec, J.

T. J. Kulp, R. Kennedy, M. Delong, D. Garvis, J. Stahovec, “The development and Testing of a Backscatter Absorption Gas Imaging System Capable of Imaging at a Range of 300 m,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 204–213 (1993).
[CrossRef]

Woods, P. T.

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, P. T. Woods, “A high-gain optical parametric amplifier tunable between 3.27 and 3.65 µm,” Opt. Commun. 93, 186–190 (1992).
[CrossRef]

Appl. Opt. (8)

Opt. Commun. (1)

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, P. T. Woods, “A high-gain optical parametric amplifier tunable between 3.27 and 3.65 µm,” Opt. Commun. 93, 186–190 (1992).
[CrossRef]

Opt. Eng. (1)

F. M. Dickey, B. D. O’Neil, “Multifaceted laser beam integrators: general formulation and design concepts,” Opt. Eng. 27, 999–1007 (1988).
[CrossRef]

Other (6)

J. DiBenedetto, G. Capelle, S. Lutz, “Uniform field laser illumination for remote sensing,” in Earth and Atmospheric Remote Sensing, R. J. Curran, J. A. Smith, K. Watson, eds., Proc. SPIE1492, 115–125 (1991).
[CrossRef]

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), Chap. 2.

T. J. Kulp, P. E. Powers, R. Kennedy, “Remote imaging of controlled gas releases using active and passive infrared imaging systems,” in Infrared Technology and Applications XXIII, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE3061, 269–278 (1997).
[CrossRef]

T. J. Kulp, R. Kennedy, M. Delong, D. Garvis, J. Stahovec, “The development and Testing of a Backscatter Absorption Gas Imaging System Capable of Imaging at a Range of 300 m,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 204–213 (1993).
[CrossRef]

T. G. McRae, L. L. Altpeter, “Application of backscatter absorption gas imaging to natural gas leak detection,” in Proceedings of the 1992 International Gas Research Conference 2, H. A. Thompson, ed. (Government Institutes, Inc., Rockville, Md., 1993), pp. 1312–1322.

T. J. Kulp, P. E. Powers, R. Kennedy, “The development of a laser-illuminated infrared imager for natural gas leak detection,” in Proceedings of the U.S. Department of Energy Natural Gas Conference (U.S. Department of Energy, Federal Energy Technology Center, Morgantown, W.Va., 1997), paper 2.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the apparatus used to demonstrate the differential BAGI measurement. HSVB, high-speed video bus.

Fig. 2
Fig. 2

Diagram of the frequency-dithered pulsed laser source used in the differential BAGI imaging system.

Fig. 3
Fig. 3

Comparison of ln-ratio images generated with a (a) conventional telescope beam expander to format the laser illumination onto the target (b) to that generated with the beam homogenizer projector to format the illumination.

Fig. 4
Fig. 4

Representative single-wavelength and differential BAGI images: (a) collected at the wavelength absorbed by methane (3018.5 cm-1); (b) collected at a wavelength off the methane absorption (3021.1 cm-1); and (c) differential BAGI image derived from the other two images.

Fig. 5
Fig. 5

(a) Single-wavelength image. (b) Superposition of ten profiles along the indicated line in (a) for ten consecutive images. (c) A ln-ratio profile derived by dividing one of the lines by that from the next frame.

Fig. 6
Fig. 6

Plot of the baseline standard deviation of ln-ratio images measured as a function of wavelength separation between the on and off wavelengths and the target angle.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Di,j=lnna:i,jλonna:i,jλoff,
Di,j=lnEL:i,jβi,jλonIsp:i,jλon exp-2kaλonR+σgλonCg:i,jli,jEL:i,jβi,jλoffIsp:i,jλoff exp-2kaλoffR+σgλoffCg:i,jli,j,
σsp=4λLπdθpx,
Di,j=lnEL:i,jβi,jλonIsp:i,jλonEL:i,jβi,jλoffIsp:i,jλoff+lnλonλoff+2ΔkaR+2ΔσgCg:i,jli,j.
ΔN=2zλ2 Δλ,

Metrics