Abstract

A trial one-dimensional (1-D) synthetic aperture infrared laser radar (SAILR) system for imaging static objects, with two CO2 lasers as a transmitter and a local oscillator for heterodyne detection, was constructed. It has a single receiving aperture mounted on a linearly movable stage with a length of 1 m and a position accuracy of 1 µm. In an indoor short-range experiment to confirm the fundamental functions of the system and demonstrate its unique imaging process we succeeded in obtaining 1-D synthetic aperture images of close specular point targets with theoretically expected resolution.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Cutrona, “Synthetic aperture radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, New York, 1970).
  2. F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).
  3. D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES- 20, 363–400 (1984).
    [CrossRef]
  4. C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst. AES- 21, 440–443 (1985).
    [CrossRef]
  5. P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3(4), 8–15 (1992).
    [CrossRef]
  6. C. C. Aleksoff, “Interferometric two-dimensional imaging of rotating objects,” Opt. Lett. 1, 54–55 (1977).
    [CrossRef] [PubMed]
  7. C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
    [CrossRef]
  8. S. Yoshikado, T. Aruga, “Feasibility study of synthetic aperture infrared laser radar techniques for imaging of static and moving objects,” Appl. Opt. 37, 5631–5639 (1998).
    [CrossRef]
  9. G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
    [CrossRef]
  10. C. H. Townes, M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, “An IR spatial interferometer at 10µm wavelength and measurement of stellar dust shells,” Infrared Phys. Technol. 35, 503–525 (1994).
    [CrossRef]

1998 (1)

1994 (1)

C. H. Townes, M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, “An IR spatial interferometer at 10µm wavelength and measurement of stellar dust shells,” Infrared Phys. Technol. 35, 503–525 (1994).
[CrossRef]

1992 (1)

P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3(4), 8–15 (1992).
[CrossRef]

1985 (1)

C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst. AES- 21, 440–443 (1985).
[CrossRef]

1984 (1)

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES- 20, 363–400 (1984).
[CrossRef]

1977 (1)

1968 (1)

G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
[CrossRef]

Abshier, J. O.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Accetta, J. S.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Aleksoff, C. C.

C. C. Aleksoff, “Interferometric two-dimensional imaging of rotating objects,” Opt. Lett. 1, 54–55 (1977).
[CrossRef] [PubMed]

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Aruga, T.

Ausherman, D. A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES- 20, 363–400 (1984).
[CrossRef]

Bester, M.

C. H. Townes, M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, “An IR spatial interferometer at 10µm wavelength and measurement of stellar dust shells,” Infrared Phys. Technol. 35, 503–525 (1994).
[CrossRef]

Cutrona, L. J.

L. J. Cutrona, “Synthetic aperture radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, New York, 1970).

Danchi, W. C.

C. H. Townes, M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, “An IR spatial interferometer at 10µm wavelength and measurement of stellar dust shells,” Infrared Phys. Technol. 35, 503–525 (1994).
[CrossRef]

Degiacomi, C. G.

C. H. Townes, M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, “An IR spatial interferometer at 10µm wavelength and measurement of stellar dust shells,” Infrared Phys. Technol. 35, 503–525 (1994).
[CrossRef]

Fee, M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Fung, A. K.

F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).

Greenhill, L. J.

C. H. Townes, M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, “An IR spatial interferometer at 10µm wavelength and measurement of stellar dust shells,” Infrared Phys. Technol. 35, 503–525 (1994).
[CrossRef]

Idell, P. S.

P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3(4), 8–15 (1992).
[CrossRef]

Jones, H. M.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES- 20, 363–400 (1984).
[CrossRef]

Klooster, A.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Kozma, A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES- 20, 363–400 (1984).
[CrossRef]

Majewski, R. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Mathur, N. C.

G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
[CrossRef]

Moore, R. K.

F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).

Peterson, L. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Poggio, E. C.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES- 20, 363–400 (1984).
[CrossRef]

Schroeder, K. S.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Swenson, G. W.

G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
[CrossRef]

Tai, A. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Townes, C. H.

C. H. Townes, M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, “An IR spatial interferometer at 10µm wavelength and measurement of stellar dust shells,” Infrared Phys. Technol. 35, 503–525 (1994).
[CrossRef]

Ulaby, F. T.

F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).

Voelz, D. G.

P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3(4), 8–15 (1992).
[CrossRef]

Walker, J. L.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES- 20, 363–400 (1984).
[CrossRef]

Wiley, C. A.

C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst. AES- 21, 440–443 (1985).
[CrossRef]

Yoshikado, S.

Appl. Opt. (1)

IEEE Trans. Aerosp. Electron. Syst. (2)

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES- 20, 363–400 (1984).
[CrossRef]

C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst. AES- 21, 440–443 (1985).
[CrossRef]

Infrared Phys. Technol. (1)

C. H. Townes, M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, “An IR spatial interferometer at 10µm wavelength and measurement of stellar dust shells,” Infrared Phys. Technol. 35, 503–525 (1994).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3(4), 8–15 (1992).
[CrossRef]

Proc. IEEE (1)

G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
[CrossRef]

Other (3)

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

L. J. Cutrona, “Synthetic aperture radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, New York, 1970).

F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Concept of 1-D SAILR imaging for static object.

Fig. 2
Fig. 2

Block diagram of SAILR imaging process with PLA.

Fig. 3
Fig. 3

Amount of reference-wave (RW) path-length (P-L) adjustment measured by wavelength (WL) with PLA as a function of receiving aperture (RA) position and object range, z, of 10 m to 1 km.

Fig. 4
Fig. 4

Amount of reference-wave path length adjustment with PLA as a function of receiving aperture (RA) position for short object ranges (z) of 1, 2, and 10 m.

Fig. 5
Fig. 5

Schematic diagram of trial 1-D SAILR system in the configuration of indoor short-range verification experiment.

Fig. 6
Fig. 6

Typical result of short-range verification experiment for single-point target. Correlator output as a function of the receiving aperture position (top) and the corresponding object image obtained by its Fourier transform.

Fig. 7
Fig. 7

Typical result of the short-range verification experiment for a close couple of point targets. Correlator output as a function of the receiving aperture position (top) and the corresponding object image obtained by its Fourier transform.

Fig. 8
Fig. 8

Numerical simulation result in the same conditions as experiment shown in Fig. 6. Random phase error equivalent to the total noise effect with a standard deviation of 45 deg was incorporated.

Fig. 9
Fig. 9

Numerical simulation result in the same conditions as experiment shown in Fig. 7. Random phase error equivalent to the total noise effect with a standard deviation of 45 deg was incorporated.

Tables (1)

Tables Icon

Table 1 Major Characteristics of the 1-D SAILR System

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d=z+x2+z21/2-X2+Z21/2+X-x2+Z-z21/2=z1+1+x2z21/2-Z1+X2Z21/2+1+X-x2Z21/2.
dXx-X2/Z+2z-Z.
IS=2ηe/hνPLPS1/2cosωt+ϕS,
VC=C1PLPRPO1/2cosϕR-ϕO,
VCC2 coskx+ψ,
Δx, z=z+x2+z21/2-2z/λ.

Metrics