Abstract

Use of a vertical polarizer has been suggested to reduce the effects of surface reflection in the above-water measurements of marine reflectance. We suggest using a similar technique for airborne or spaceborne sensors when atmospheric scattering adds its own polarization signature to the upwelling radiance. Our own theoretical sensitivity study supports the recommendation of Fougnie et al. [Appl. Opt. 38, 3844 (1999)] (40–50° vertical angle and azimuth angle near 135°, polarizer parallel to the viewing plane) for above-water measurements. However, the optimal viewing directions (and the optimal orientation of the polarizer) change with altitude above the sea surface, solar angle, and atmospheric vertical optical structure. A polarization efficiency function is introduced, which shows the maximal possible polarization discrimination of the background radiation for an arbitrary altitude above the sea surface, viewing direction, and solar angle. Our comment is meant to encourage broader application of airborne and spaceborne polarization sensors in remote sensing of water and sea surface properties.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Fougnie, R. Frouin, P. Lecomte, P-Y. Deschamps, “Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance,” Appl. Opt. 38, 3844–3856 (1999).
    [CrossRef]
  2. A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, “The effectiveness of polarization measurements in passive remote sensing of the ocean in the visible region of the spectrum,” Sov. J. Remote Sensing 7(5), 886–899 (1990).
  3. N. A. Krotkov, T. V. Kondranin, A. P. Vasilkov, “Optimization of the polarization remote sensing techniques of the ocean,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 188–199 (1992).
    [CrossRef]
  4. A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, G. A. Lakhtanov, V. Ye. Churov, “Properties of the angular dependence of polarization for upward radiation from the sea surface in the visible region of the spectrum,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26(5), 397–401 (1990).
  5. C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).
  6. B. M. Herman, S. R. Browning, “A numerical solution of the equation of radiative transfer,” J. Atmos. Sci. 22, 559–566 (1965).
    [CrossRef]
  7. A. A. Fomichov, T. V. Kondranin, N. A. Krotkov, “Polarization remote sensing of slicks on the ocean surface,” in Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium, S. Keevallik, O. Kärner, eds. (Deepak, Hampton, Va., 1993), pp. 417–420.
  8. G. A. Lakhtanov, V. E. Churov, A. P. Piotrovskaya, “Determination of suspended particle concentration in surface water layer using degree of polarization of the upwelling radiation,” in Complex Remote Sensing of Lakes, K. Ya. Kondratyev, ed. Nauka, Leningrad, (1987), pp. 76–82.
  9. A. A. Buznikov, G. A. Lakhtanov, K. A. Mokievsky, V. B. Rumyantsev, S. G. Shvareva, “Combined use of spectral brightness and polarization characteristics of upward radiation in remote sensing of inland water bodies,” Hydrobiologia 322, 233–236 (1996).
    [CrossRef]
  10. Polarization and directionality of the Earth’s reflectance (POLDER) airborne and spaceborne instruments ( http://www-projet.cst.cnes.fr:8060/WelcomeCnes.html ).
  11. B. Cairns, L. D. Travis, E. E. Russell, “The Research Scanning Polarimeter: calibration and ground-based measurements,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 186–197 (1999).
  12. V. E. Pozhar, V. I. Pustovoit, “A possible approach to building new vision systems based on acoustooptical video spectrometers,” Radiotekh. Elektron. 41, 1272–1278 (1996).

1999

1996

A. A. Buznikov, G. A. Lakhtanov, K. A. Mokievsky, V. B. Rumyantsev, S. G. Shvareva, “Combined use of spectral brightness and polarization characteristics of upward radiation in remote sensing of inland water bodies,” Hydrobiologia 322, 233–236 (1996).
[CrossRef]

V. E. Pozhar, V. I. Pustovoit, “A possible approach to building new vision systems based on acoustooptical video spectrometers,” Radiotekh. Elektron. 41, 1272–1278 (1996).

1990

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, “The effectiveness of polarization measurements in passive remote sensing of the ocean in the visible region of the spectrum,” Sov. J. Remote Sensing 7(5), 886–899 (1990).

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, G. A. Lakhtanov, V. Ye. Churov, “Properties of the angular dependence of polarization for upward radiation from the sea surface in the visible region of the spectrum,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26(5), 397–401 (1990).

1965

B. M. Herman, S. R. Browning, “A numerical solution of the equation of radiative transfer,” J. Atmos. Sci. 22, 559–566 (1965).
[CrossRef]

1954

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Browning, S. R.

B. M. Herman, S. R. Browning, “A numerical solution of the equation of radiative transfer,” J. Atmos. Sci. 22, 559–566 (1965).
[CrossRef]

Buznikov, A. A.

A. A. Buznikov, G. A. Lakhtanov, K. A. Mokievsky, V. B. Rumyantsev, S. G. Shvareva, “Combined use of spectral brightness and polarization characteristics of upward radiation in remote sensing of inland water bodies,” Hydrobiologia 322, 233–236 (1996).
[CrossRef]

Cairns, B.

B. Cairns, L. D. Travis, E. E. Russell, “The Research Scanning Polarimeter: calibration and ground-based measurements,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 186–197 (1999).

Churov, V. E.

G. A. Lakhtanov, V. E. Churov, A. P. Piotrovskaya, “Determination of suspended particle concentration in surface water layer using degree of polarization of the upwelling radiation,” in Complex Remote Sensing of Lakes, K. Ya. Kondratyev, ed. Nauka, Leningrad, (1987), pp. 76–82.

Churov, V. Ye.

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, G. A. Lakhtanov, V. Ye. Churov, “Properties of the angular dependence of polarization for upward radiation from the sea surface in the visible region of the spectrum,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26(5), 397–401 (1990).

Cox, C.

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Deschamps, P-Y.

Fomichov, A. A.

A. A. Fomichov, T. V. Kondranin, N. A. Krotkov, “Polarization remote sensing of slicks on the ocean surface,” in Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium, S. Keevallik, O. Kärner, eds. (Deepak, Hampton, Va., 1993), pp. 417–420.

Fougnie, B.

Frouin, R.

Herman, B. M.

B. M. Herman, S. R. Browning, “A numerical solution of the equation of radiative transfer,” J. Atmos. Sci. 22, 559–566 (1965).
[CrossRef]

Kondranin, T. V.

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, “The effectiveness of polarization measurements in passive remote sensing of the ocean in the visible region of the spectrum,” Sov. J. Remote Sensing 7(5), 886–899 (1990).

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, G. A. Lakhtanov, V. Ye. Churov, “Properties of the angular dependence of polarization for upward radiation from the sea surface in the visible region of the spectrum,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26(5), 397–401 (1990).

A. A. Fomichov, T. V. Kondranin, N. A. Krotkov, “Polarization remote sensing of slicks on the ocean surface,” in Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium, S. Keevallik, O. Kärner, eds. (Deepak, Hampton, Va., 1993), pp. 417–420.

N. A. Krotkov, T. V. Kondranin, A. P. Vasilkov, “Optimization of the polarization remote sensing techniques of the ocean,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 188–199 (1992).
[CrossRef]

Krotkov, N. A.

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, “The effectiveness of polarization measurements in passive remote sensing of the ocean in the visible region of the spectrum,” Sov. J. Remote Sensing 7(5), 886–899 (1990).

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, G. A. Lakhtanov, V. Ye. Churov, “Properties of the angular dependence of polarization for upward radiation from the sea surface in the visible region of the spectrum,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26(5), 397–401 (1990).

A. A. Fomichov, T. V. Kondranin, N. A. Krotkov, “Polarization remote sensing of slicks on the ocean surface,” in Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium, S. Keevallik, O. Kärner, eds. (Deepak, Hampton, Va., 1993), pp. 417–420.

N. A. Krotkov, T. V. Kondranin, A. P. Vasilkov, “Optimization of the polarization remote sensing techniques of the ocean,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 188–199 (1992).
[CrossRef]

Lakhtanov, G. A.

A. A. Buznikov, G. A. Lakhtanov, K. A. Mokievsky, V. B. Rumyantsev, S. G. Shvareva, “Combined use of spectral brightness and polarization characteristics of upward radiation in remote sensing of inland water bodies,” Hydrobiologia 322, 233–236 (1996).
[CrossRef]

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, G. A. Lakhtanov, V. Ye. Churov, “Properties of the angular dependence of polarization for upward radiation from the sea surface in the visible region of the spectrum,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26(5), 397–401 (1990).

G. A. Lakhtanov, V. E. Churov, A. P. Piotrovskaya, “Determination of suspended particle concentration in surface water layer using degree of polarization of the upwelling radiation,” in Complex Remote Sensing of Lakes, K. Ya. Kondratyev, ed. Nauka, Leningrad, (1987), pp. 76–82.

Lecomte, P.

Mokievsky, K. A.

A. A. Buznikov, G. A. Lakhtanov, K. A. Mokievsky, V. B. Rumyantsev, S. G. Shvareva, “Combined use of spectral brightness and polarization characteristics of upward radiation in remote sensing of inland water bodies,” Hydrobiologia 322, 233–236 (1996).
[CrossRef]

Munk, W.

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Piotrovskaya, A. P.

G. A. Lakhtanov, V. E. Churov, A. P. Piotrovskaya, “Determination of suspended particle concentration in surface water layer using degree of polarization of the upwelling radiation,” in Complex Remote Sensing of Lakes, K. Ya. Kondratyev, ed. Nauka, Leningrad, (1987), pp. 76–82.

Pozhar, V. E.

V. E. Pozhar, V. I. Pustovoit, “A possible approach to building new vision systems based on acoustooptical video spectrometers,” Radiotekh. Elektron. 41, 1272–1278 (1996).

Pustovoit, V. I.

V. E. Pozhar, V. I. Pustovoit, “A possible approach to building new vision systems based on acoustooptical video spectrometers,” Radiotekh. Elektron. 41, 1272–1278 (1996).

Rumyantsev, V. B.

A. A. Buznikov, G. A. Lakhtanov, K. A. Mokievsky, V. B. Rumyantsev, S. G. Shvareva, “Combined use of spectral brightness and polarization characteristics of upward radiation in remote sensing of inland water bodies,” Hydrobiologia 322, 233–236 (1996).
[CrossRef]

Russell, E. E.

B. Cairns, L. D. Travis, E. E. Russell, “The Research Scanning Polarimeter: calibration and ground-based measurements,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 186–197 (1999).

Shvareva, S. G.

A. A. Buznikov, G. A. Lakhtanov, K. A. Mokievsky, V. B. Rumyantsev, S. G. Shvareva, “Combined use of spectral brightness and polarization characteristics of upward radiation in remote sensing of inland water bodies,” Hydrobiologia 322, 233–236 (1996).
[CrossRef]

Travis, L. D.

B. Cairns, L. D. Travis, E. E. Russell, “The Research Scanning Polarimeter: calibration and ground-based measurements,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 186–197 (1999).

Vasilkov, A. P.

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, G. A. Lakhtanov, V. Ye. Churov, “Properties of the angular dependence of polarization for upward radiation from the sea surface in the visible region of the spectrum,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26(5), 397–401 (1990).

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, “The effectiveness of polarization measurements in passive remote sensing of the ocean in the visible region of the spectrum,” Sov. J. Remote Sensing 7(5), 886–899 (1990).

N. A. Krotkov, T. V. Kondranin, A. P. Vasilkov, “Optimization of the polarization remote sensing techniques of the ocean,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 188–199 (1992).
[CrossRef]

Appl. Opt.

Hydrobiologia

A. A. Buznikov, G. A. Lakhtanov, K. A. Mokievsky, V. B. Rumyantsev, S. G. Shvareva, “Combined use of spectral brightness and polarization characteristics of upward radiation in remote sensing of inland water bodies,” Hydrobiologia 322, 233–236 (1996).
[CrossRef]

Izv. Acad. Sci. USSR Atmos. Oceanic Phys.

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, G. A. Lakhtanov, V. Ye. Churov, “Properties of the angular dependence of polarization for upward radiation from the sea surface in the visible region of the spectrum,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26(5), 397–401 (1990).

J. Atmos. Sci.

B. M. Herman, S. R. Browning, “A numerical solution of the equation of radiative transfer,” J. Atmos. Sci. 22, 559–566 (1965).
[CrossRef]

J. Mar. Res.

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Radiotekh. Elektron.

V. E. Pozhar, V. I. Pustovoit, “A possible approach to building new vision systems based on acoustooptical video spectrometers,” Radiotekh. Elektron. 41, 1272–1278 (1996).

Sov. J. Remote Sensing

A. P. Vasilkov, T. V. Kondranin, N. A. Krotkov, “The effectiveness of polarization measurements in passive remote sensing of the ocean in the visible region of the spectrum,” Sov. J. Remote Sensing 7(5), 886–899 (1990).

Other

N. A. Krotkov, T. V. Kondranin, A. P. Vasilkov, “Optimization of the polarization remote sensing techniques of the ocean,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 188–199 (1992).
[CrossRef]

A. A. Fomichov, T. V. Kondranin, N. A. Krotkov, “Polarization remote sensing of slicks on the ocean surface,” in Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium, S. Keevallik, O. Kärner, eds. (Deepak, Hampton, Va., 1993), pp. 417–420.

G. A. Lakhtanov, V. E. Churov, A. P. Piotrovskaya, “Determination of suspended particle concentration in surface water layer using degree of polarization of the upwelling radiation,” in Complex Remote Sensing of Lakes, K. Ya. Kondratyev, ed. Nauka, Leningrad, (1987), pp. 76–82.

Polarization and directionality of the Earth’s reflectance (POLDER) airborne and spaceborne instruments ( http://www-projet.cst.cnes.fr:8060/WelcomeCnes.html ).

B. Cairns, L. D. Travis, E. E. Russell, “The Research Scanning Polarimeter: calibration and ground-based measurements,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 186–197 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Angular distribution of the polarization efficiency function [Eq. (1)] v(), just above the sea surface for solar zenith angle θ0 = 60° (left) and θ0 = 25° (right), = (θ, φ), θ is the vertical angle and φ is the azimuth angle (φ = 0° corresponds to the forward reflection and φ = 180° corresponds to backward reflection), λ = 450 nm, P(90°) = 0.2, wind speed 5 m/s, aerosol optical thickness 0.25 at 450 nm.

Fig. 2
Fig. 2

Same as Fig. 1 but for observations at the top of the atmosphere.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

vnˆ, H=ξnˆ, χm/ξ0nˆ0m,

Metrics