Abstract

A lidar polychromator design for the measurement of atmospheric temperature profiles in the presence of clouds with the rotational Raman method is presented. The design utilizes multicavity interference filters mounted sequentially at small angles of incidence. Characteristics of this design are high signal efficiency and adjustable center wavelengths of the filters combined with a stable and relatively simple experimental setup. High suppression of the elastic backscatter signal in the rotational Raman detection channels allows temperature measurements independent of the presence of thin clouds or aerosol layers; no influence of particle scattering on the lidar temperature profile was observed in clouds with a backscatter ratio of at least 45. The minimum integration time needed for temperature profiling with a statistical temperature error of ±1 K at, e.g., 20-km height and 960-m height resolution is 1.5 h.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  2. Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef] [PubMed]
  3. J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
    [CrossRef] [PubMed]
  4. D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  5. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  6. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
    [CrossRef]
  7. R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry-Perot etalon for the determination of rotational Raman constants of simple molecules: the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971); the exponent 2 should be replaced by 3 in Eq. (8) on p. 238.
  8. A. Buldakov, I. I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules,” Opt. Spectrosc. (USSR) 46, 488–489 (1979).
  9. I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen,” Opt. Spectrosc. (USSR) 48, 411–412 (1980).
  10. D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
    [CrossRef]
  11. T. Kitada, A. Hori, T. Taira, T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, Tsukuba, Japan, 1994), pp. 567–568.
  12. J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
    [CrossRef]

1996 (2)

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
[CrossRef] [PubMed]

1993 (2)

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

1983 (1)

1980 (1)

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen,” Opt. Spectrosc. (USSR) 48, 411–412 (1980).

1979 (1)

A. Buldakov, I. I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules,” Opt. Spectrosc. (USSR) 46, 488–489 (1979).

1974 (1)

1972 (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

1971 (1)

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry-Perot etalon for the determination of rotational Raman constants of simple molecules: the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971); the exponent 2 should be replaced by 3 in Eq. (8) on p. 238.

1969 (1)

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

Arshinov, Yu. F.

Bobrovnikov, S. M.

Buldakov, A.

A. Buldakov, I. I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules,” Opt. Spectrosc. (USSR) 46, 488–489 (1979).

Butcher, R. J.

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry-Perot etalon for the determination of rotational Raman constants of simple molecules: the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971); the exponent 2 should be replaced by 3 in Eq. (8) on p. 238.

Chanin, M. L.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Cooney, J.

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Golubeva, N. G.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen,” Opt. Spectrosc. (USSR) 48, 411–412 (1980).

Hauchecorne, A.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Hori, A.

T. Kitada, A. Hori, T. Taira, T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, Tsukuba, Japan, 1994), pp. 567–568.

Hunt, J. L.

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

Jones, W. J.

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry-Perot etalon for the determination of rotational Raman constants of simple molecules: the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971); the exponent 2 should be replaced by 3 in Eq. (8) on p. 238.

Kitada, T.

T. Kitada, A. Hori, T. Taira, T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, Tsukuba, Japan, 1994), pp. 567–568.

Klimenko, V. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen,” Opt. Spectrosc. (USSR) 48, 411–412 (1980).

Kobayashi, T.

T. Kitada, A. Hori, T. Taira, T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, Tsukuba, Japan, 1994), pp. 567–568.

Kondilenko, I. I.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen,” Opt. Spectrosc. (USSR) 48, 411–412 (1980).

Korotkov, P. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen,” Opt. Spectrosc. (USSR) 48, 411–412 (1980).

Lahmann, W.

Lapp, M.

Matrosov, I. I.

A. Buldakov, I. I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules,” Opt. Spectrosc. (USSR) 46, 488–489 (1979).

McCubbin, T. K.

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

Mitev, V.

Mitev, V. M.

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Penney, M.

Pepler, S. J.

Pole, S. R.

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

Popova, T. N.

A. Buldakov, I. I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules,” Opt. Spectrosc. (USSR) 46, 488–489 (1979).

Reichardt, J.

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Renschler, D. L.

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

Serwazi, M.

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

St. Peters, R. L.

Taira, T.

T. Kitada, A. Hori, T. Taira, T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, Tsukuba, Japan, 1994), pp. 567–568.

Thomas, L.

Vaughan, G.

Wandinger, U.

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Wareing, D. P.

Weitkamp, C.

J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
[CrossRef] [PubMed]

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Willetts, D. V.

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry-Perot etalon for the determination of rotational Raman constants of simple molecules: the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971); the exponent 2 should be replaced by 3 in Eq. (8) on p. 238.

Zeyn, J.

Zuev, V. E.

Appl. Opt. (2)

IEEE Trans. Geosci. Remote Sens. (1)

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

J. Appl. Meteorol. (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

J. Mol. Spectrosc. (1)

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (USSR) (2)

A. Buldakov, I. I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules,” Opt. Spectrosc. (USSR) 46, 488–489 (1979).

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen,” Opt. Spectrosc. (USSR) 48, 411–412 (1980).

Proc. R. Soc. London Ser. A (1)

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry-Perot etalon for the determination of rotational Raman constants of simple molecules: the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971); the exponent 2 should be replaced by 3 in Eq. (8) on p. 238.

Other (1)

T. Kitada, A. Hori, T. Taira, T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, Tsukuba, Japan, 1994), pp. 567–568.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated intensity I of the pure rotational Raman signal at ground level backscattered from a column between 24- and 25-km height in relation to the emitted laser intensity I 0 at λ0 = 532.25 nm and transmittances of the employed interference filters in final alignment.

Fig. 2
Fig. 2

Setup of the polychromator: OF, optical fiber; L1–L5, lenses; IF1a–IF4, interference filters; ND, neutral density attenuator; PMT1–PMT4, photomultiplier tubes for detection of the elastic, low- and high-quantum-number rotational Raman and N2 vibrational–rotational Raman signals, respectively.

Fig. 3
Fig. 3

Measured CWL of the interference filters versus AOI The solid curves represent fits of the data according to Eq. (5).

Fig. 4
Fig. 4

Lidar 532.25-nm elastic (dashed curves), low- (short dashes), and high quantum number (thin solid curves) rotational Raman signals, and lidar backscatter ratio (bold curves) for AOI’s of (a) 5.5° and 3.5° and (b) 7° and 5° for the low- and high-quantum-number PRRS filters, respectively. 16 and 10 min of the lidar data were integrated, and the data height resolution is 120 m. (c), (d) Radiosonde temperature (dotted curve) and simultaneously measured lidar temperature (solid curve) derived from the data shown in (a) and (b). For the setting with larger AOI’s, the cloud with a backscatter ratio of 45 at 5.5-km height does not interfere with the lidar temperature measurement in (d). For the temperature calculation, the lidar signals were smoothed with a gliding average window length of 1200 m. Error bars indicate the 1σ statistical standard deviation of the lidar temperature measurement.

Fig. 5
Fig. 5

Lidar and radiosonde temperature profiles measured near Kiruna (67.9 °N, 21.1 °E) in northern Sweden on 28 and 29 January 1998, and model analysis by the ECMWF for the same location. The lidar data were smoothed with a gliding average window length of 960 m below and 1920 m above 23-km height. Error bars indicate a 1σ statistical standard deviation of the lidar temperature measurement.

Fig. 6
Fig. 6

Calibration of the lidar with radiosonde temperature data taken during the lidar measurement. A second-order-polynomial fit was used as the calibration function. For all the heights, temperature data of the local radiosonde are plotted versus the corresponding ratios R of high-to-low quantum-number rotational Raman channel signals for the nights of 28 and 29 (♦) and 30 and 31 (○) January 1998. Lidar data were integrated over 14 h and smoothed with a gliding average window length of 960 m.

Fig. 7
Fig. 7

Minimum GKSS Raman lidar integration time necessary for a 1σ statistical standard deviation of ±1, ±2, ±5, and ±10 K. For the calculation, we used the best lidar signals and smoothed them with a 960-m gliding average window.

Tables (2)

Tables Icon

Table 1 Valuesa for B 0, D 0, g J , I, and γ2

Tables Icon

Table 2 Parameters of the Interference Filters in Final Alignmenta

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ni=Kiξ2J τJ64π415×NgJhcB0ν˜0+Δν˜AS,J4γ22I+12kT×J+1J+22J+3 exp-Erot,JkT.
Erot,J=B0JJ+1-D0J2J+12hc,
Δν˜AS,J=B022J-1-D032J-1+2J-13,
ΔT=dTdR R1/n1+1/nh1/2,
λφ=λ1-sin2φ/n21/2,

Metrics