Abstract

An optimized code to perform the near-real-time retrieval of profiles of pressure, temperature, and volume mixing ratio (VMR) of five key species (O3, H2O, HNO3, CH4, and N2O) from infrared limb spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) experiment on board the European Space Agency (ESA) Environmental Satellite ENVISAT-1 was developed as part of a ESA-supported study. The implementation uses the global fit approach on selected narrow spectral intervals (microwindows) to retrieve each profile in sequence. The trade-off between run time and accuracy of the retrieval was optimized from both the physical and the mathematical points of view, with optimizations in the program structure, in the radiative transfer model, and in the computation of the retrieval Jacobian. The attained performances of the retrieval code are noise error on temperature <2 K at all the altitudes covered by the typical MIPAS scan (8–53 km with 3-km resolution), noise error on tangent pressure <3%, and noise error on VMR of the target species <5% at most of the altitudes covered by the standard MIPAS scan, with a total run time of less than 1 min on a modern workstation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ESA, “ENVISAT—MIPAS: an instrument for atmospheric chemistry and climate research,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 2000).
  2. M. Endemann, “MIPAS instrument concept and performance,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 29–43.
  3. R. L. Lachance, “MIPAS level 1B algorithm technical baseline document: an overview,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 51–63.
  4. T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).
  5. G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.
  6. T. von Clarmann, G. Echle, “Selection of optimized microwindows for atmospheric spectroscopy,” Appl. Opt. 37, 7661–7669 (1998).
    [CrossRef]
  7. M. Carlotti, M. Ridolfi, “Derivation of temperature and pressure from submillimetric limb observations,” Appl. Opt. 38, 2398–2409 (1999).
    [CrossRef]
  8. T. von Clarmann, A. Linden, G. Echle, A. Wegner, H. Fischer, M. Lopez-Puertas, in Proceedings of IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith, K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 557–560.
  9. M. Carlotti, “Global-fit approach to the analysis of limb-scanning atmospheric measurements,” Appl. Opt. 27, 3250–3254 (1988).
    [CrossRef] [PubMed]
  10. T. B. McKee, R. I. Whitman, J. J. Lambiotte, “A technique to infer atmospheric water-vapor mixing ratio from measured horizon radiance profiles,” (NASA, Washington, D.C., 1969).
  11. A. Goldman, R. S. Saunders, “Analysis of atmospheric infrared spectra for altitude distribution of atmospheric trace constituents. I. Method of analysis,” J. Quant. Spectrosc. Radiat. Transfer 21, 155–162 (1979).
    [CrossRef]
  12. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, New York, 1977).
  13. P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, San Diego, Calif., 1981).
  14. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic, San Diego, Calif., 1984).
  15. D. S. Sivia, Data Analysis: A Bayesian Tutorial (Clarendon, Oxford, UK, 1998).
  16. R. E. Kalman, “Algebraic aspects of the generalized inverse of a rectangular matrix,” in Proceedings of Advanced Seminar on Generalized Inverse and Applications, M. Z. Nashed, ed. (Academic, San Diego, Calif., 1976), pp. 111–124.
  17. K. Levenberg, “A method for the solution of certain problems in least squares,” Quart. Appl. Math. 2, 164–168 (1944).
  18. D. W. Marquardt, “An algorithm for the least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
    [CrossRef]
  19. W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannerly, Numerical Recipes in Fortran, 2nd ed. (Cambridge University, Cambridge, UK, 1992).
  20. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
    [CrossRef]
  21. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
    [CrossRef]
  22. U.S. Government Document DMATR 8350.2, “Defense World Geodetic System 1984: its definition and relationship with local geodetic systems” (U.S. Department of Defense, Washington, D.C., 1994).
  23. J. T. Houghton, The Physics of Atmospheres, 2nd ed. (Cambridge University, Cambridge, UK, 1986).
  24. L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. De Souza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” J. Quant. Spectrosc. Radiat. Transfer 59, 481–493 (1998).
    [CrossRef]
  25. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, San Diego, Calif., 1972).
  26. L. Delbouille, G. Roland, “Assessement of finite field-of-view effects on MIPAS ILS and review of resolution enhancement techniques,” , Purchase Order 130605 (University of Liège, Liège, Belgium, 1995).
  27. R. H. Norton, R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66, 259–264 (1976); errata 67, 419 (1977).
  28. A. N. Tikhonov, V. Y. Arsenin, “Solutions of ill-posed problems,” (Winston, Washington, D.C., 1977).
  29. M. Carlotti, B. Carli, “Approach to the design and data analysis of a limb-scanning experiment,” Appl. Opt. 33, 3237–3249 (1994).
    [CrossRef] [PubMed]
  30. T. von Clarmann, H. Fischer, H. Oelhaf, “Instabilities in retrieval of atmospheric trace gas profiles caused by the use of atmospheric level models,” Appl. Opt. 30, 2924–2925 (1991).
    [CrossRef]
  31. B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).
  32. D. P. Edwards, L. L. Strow, “Spectral line shape considerations for limb temperature sounders,” J. Geophys. Res. 96, 20859–20868 (1991).
    [CrossRef]
  33. P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Prop. AP-23, 498–506 (1975).
    [CrossRef]
  34. M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.
  35. D. P. Edwards, “GENLN2: a general line-by-line atmospheric transmittance and radiance model. Version 3.0 description and users guide,” (National Center for Atmospheric Research, Boulder, Colo., 1992).
  36. P. Edwards, “High level algorithm definition document of the MIPAS reference forward model,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1997).

1999 (1)

1998 (2)

T. von Clarmann, G. Echle, “Selection of optimized microwindows for atmospheric spectroscopy,” Appl. Opt. 37, 7661–7669 (1998).
[CrossRef]

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. De Souza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” J. Quant. Spectrosc. Radiat. Transfer 59, 481–493 (1998).
[CrossRef]

1994 (1)

1991 (2)

T. von Clarmann, H. Fischer, H. Oelhaf, “Instabilities in retrieval of atmospheric trace gas profiles caused by the use of atmospheric level models,” Appl. Opt. 30, 2924–2925 (1991).
[CrossRef]

D. P. Edwards, L. L. Strow, “Spectral line shape considerations for limb temperature sounders,” J. Geophys. Res. 96, 20859–20868 (1991).
[CrossRef]

1988 (1)

1979 (1)

A. Goldman, R. S. Saunders, “Analysis of atmospheric infrared spectra for altitude distribution of atmospheric trace constituents. I. Method of analysis,” J. Quant. Spectrosc. Radiat. Transfer 21, 155–162 (1979).
[CrossRef]

1976 (2)

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
[CrossRef]

R. H. Norton, R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66, 259–264 (1976); errata 67, 419 (1977).

1975 (1)

P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Prop. AP-23, 498–506 (1975).
[CrossRef]

1966 (1)

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

1963 (1)

D. W. Marquardt, “An algorithm for the least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

1944 (1)

K. Levenberg, “A method for the solution of certain problems in least squares,” Quart. Appl. Math. 2, 164–168 (1944).

Arsenin, V. Y.

A. N. Tikhonov, V. Y. Arsenin, “Solutions of ill-posed problems,” (Winston, Washington, D.C., 1977).

Beer, R.

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, San Diego, Calif., 1972).

Benson, R. G.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. De Souza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” J. Quant. Spectrosc. Radiat. Transfer 59, 481–493 (1998).
[CrossRef]

Carli, B.

M. Carlotti, B. Carli, “Approach to the design and data analysis of a limb-scanning experiment,” Appl. Opt. 33, 3237–3249 (1994).
[CrossRef] [PubMed]

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Carlotti, M.

De Souza-Machado, S.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. De Souza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” J. Quant. Spectrosc. Radiat. Transfer 59, 481–493 (1998).
[CrossRef]

Delbouille, L.

L. Delbouille, G. Roland, “Assessement of finite field-of-view effects on MIPAS ILS and review of resolution enhancement techniques,” , Purchase Order 130605 (University of Liège, Liège, Belgium, 1995).

Dinelli, B. M.

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Dudhia, A.

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.

Echle, G.

T. von Clarmann, G. Echle, “Selection of optimized microwindows for atmospheric spectroscopy,” Appl. Opt. 37, 7661–7669 (1998).
[CrossRef]

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

T. von Clarmann, A. Linden, G. Echle, A. Wegner, H. Fischer, M. Lopez-Puertas, in Proceedings of IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith, K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 557–560.

Edlen, B.

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Edwards, D. P.

D. P. Edwards, L. L. Strow, “Spectral line shape considerations for limb temperature sounders,” J. Geophys. Res. 96, 20859–20868 (1991).
[CrossRef]

D. P. Edwards, “GENLN2: a general line-by-line atmospheric transmittance and radiance model. Version 3.0 description and users guide,” (National Center for Atmospheric Research, Boulder, Colo., 1992).

Edwards, P.

P. Edwards, “High level algorithm definition document of the MIPAS reference forward model,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1997).

Endemann, M.

M. Endemann, “MIPAS instrument concept and performance,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 29–43.

Fischer, H.

T. von Clarmann, H. Fischer, H. Oelhaf, “Instabilities in retrieval of atmospheric trace gas profiles caused by the use of atmospheric level models,” Appl. Opt. 30, 2924–2925 (1991).
[CrossRef]

T. von Clarmann, A. Linden, G. Echle, A. Wegner, H. Fischer, M. Lopez-Puertas, in Proceedings of IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith, K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 557–560.

Flannerly, B. P.

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannerly, Numerical Recipes in Fortran, 2nd ed. (Cambridge University, Cambridge, UK, 1992).

Flaud, J.-M.

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.

Gill, P. E.

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, San Diego, Calif., 1981).

Goldman, A.

A. Goldman, R. S. Saunders, “Analysis of atmospheric infrared spectra for altitude distribution of atmospheric trace constituents. I. Method of analysis,” J. Quant. Spectrosc. Radiat. Transfer 21, 155–162 (1979).
[CrossRef]

Hannon, S. E.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. De Souza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” J. Quant. Spectrosc. Radiat. Transfer 59, 481–493 (1998).
[CrossRef]

Harrold, C.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Houghton, J. T.

J. T. Houghton, The Physics of Atmospheres, 2nd ed. (Cambridge University, Cambridge, UK, 1986).

Kalman, R. E.

R. E. Kalman, “Algebraic aspects of the generalized inverse of a rectangular matrix,” in Proceedings of Advanced Seminar on Generalized Inverse and Applications, M. Z. Nashed, ed. (Academic, San Diego, Calif., 1976), pp. 111–124.

Kerridge, B.

G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Kerridge, B. J.

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

Koutoulaki, K.

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Lachance, R. L.

R. L. Lachance, “MIPAS level 1B algorithm technical baseline document: an overview,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 51–63.

Lambiotte, J. J.

T. B. McKee, R. I. Whitman, J. J. Lambiotte, “A technique to infer atmospheric water-vapor mixing ratio from measured horizon radiance profiles,” (NASA, Washington, D.C., 1969).

Levenberg, K.

K. Levenberg, “A method for the solution of certain problems in least squares,” Quart. Appl. Math. 2, 164–168 (1944).

Linden, A.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

T. von Clarmann, A. Linden, G. Echle, A. Wegner, H. Fischer, M. Lopez-Puertas, in Proceedings of IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith, K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 557–560.

Lopez-Puertas, M.

T. von Clarmann, A. Linden, G. Echle, A. Wegner, H. Fischer, M. Lopez-Puertas, in Proceedings of IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith, K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 557–560.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

Lopez-Valverde, M. A.

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Marquardt, D. W.

D. W. Marquardt, “An algorithm for the least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Martin-Torres, F. J.

G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

Martín-Torres, F. J.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

McKee, T. B.

T. B. McKee, R. I. Whitman, J. J. Lambiotte, “A technique to infer atmospheric water-vapor mixing ratio from measured horizon radiance profiles,” (NASA, Washington, D.C., 1969).

Menke, W.

W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic, San Diego, Calif., 1984).

Motteler, H. E.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. De Souza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” J. Quant. Spectrosc. Radiat. Transfer 59, 481–493 (1998).
[CrossRef]

Murray, W.

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, San Diego, Calif., 1981).

Norton, R. H.

Oelhaf, H.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannerly, Numerical Recipes in Fortran, 2nd ed. (Cambridge University, Cambridge, UK, 1992).

Raspollini, P.

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Reburn, J.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Remedios, J.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Ridolfi, M.

M. Carlotti, M. Ridolfi, “Derivation of temperature and pressure from submillimetric limb observations,” Appl. Opt. 38, 2398–2409 (1999).
[CrossRef]

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Rodgers, C. D.

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
[CrossRef]

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Roland, G.

L. Delbouille, G. Roland, “Assessement of finite field-of-view effects on MIPAS ILS and review of resolution enhancement techniques,” , Purchase Order 130605 (University of Liège, Liège, Belgium, 1995).

Rosenkranz, P. W.

P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Prop. AP-23, 498–506 (1975).
[CrossRef]

Saunders, R. S.

A. Goldman, R. S. Saunders, “Analysis of atmospheric infrared spectra for altitude distribution of atmospheric trace constituents. I. Method of analysis,” J. Quant. Spectrosc. Radiat. Transfer 21, 155–162 (1979).
[CrossRef]

Siddans, R.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Sivia, D. S.

D. S. Sivia, Data Analysis: A Bayesian Tutorial (Clarendon, Oxford, UK, 1998).

Strow, L. L.

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. De Souza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” J. Quant. Spectrosc. Radiat. Transfer 59, 481–493 (1998).
[CrossRef]

D. P. Edwards, L. L. Strow, “Spectral line shape considerations for limb temperature sounders,” J. Geophys. Res. 96, 20859–20868 (1991).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannerly, Numerical Recipes in Fortran, 2nd ed. (Cambridge University, Cambridge, UK, 1992).

Tikhonov, A. N.

A. N. Tikhonov, V. Y. Arsenin, “Solutions of ill-posed problems,” (Winston, Washington, D.C., 1977).

Twomey, S.

S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, New York, 1977).

von Clarmann, T.

T. von Clarmann, G. Echle, “Selection of optimized microwindows for atmospheric spectroscopy,” Appl. Opt. 37, 7661–7669 (1998).
[CrossRef]

T. von Clarmann, H. Fischer, H. Oelhaf, “Instabilities in retrieval of atmospheric trace gas profiles caused by the use of atmospheric level models,” Appl. Opt. 30, 2924–2925 (1991).
[CrossRef]

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

T. von Clarmann, A. Linden, G. Echle, A. Wegner, H. Fischer, M. Lopez-Puertas, in Proceedings of IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith, K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 557–560.

Wegner, A.

T. von Clarmann, A. Linden, G. Echle, A. Wegner, H. Fischer, M. Lopez-Puertas, in Proceedings of IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith, K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 557–560.

Wells, R. J.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Wetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannerly, Numerical Recipes in Fortran, 2nd ed. (Cambridge University, Cambridge, UK, 1992).

Whitman, R. I.

T. B. McKee, R. I. Whitman, J. J. Lambiotte, “A technique to infer atmospheric water-vapor mixing ratio from measured horizon radiance profiles,” (NASA, Washington, D.C., 1969).

Wright, M. H.

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, San Diego, Calif., 1981).

Zaragoza, G.

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

Appl. Opt. (5)

IEEE Trans. Antennas Prop. (1)

P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Prop. AP-23, 498–506 (1975).
[CrossRef]

J. Geophys. Res. (1)

D. P. Edwards, L. L. Strow, “Spectral line shape considerations for limb temperature sounders,” J. Geophys. Res. 96, 20859–20868 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (2)

A. Goldman, R. S. Saunders, “Analysis of atmospheric infrared spectra for altitude distribution of atmospheric trace constituents. I. Method of analysis,” J. Quant. Spectrosc. Radiat. Transfer 21, 155–162 (1979).
[CrossRef]

L. L. Strow, H. E. Motteler, R. G. Benson, S. E. Hannon, S. De Souza-Machado, “Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables,” J. Quant. Spectrosc. Radiat. Transfer 59, 481–493 (1998).
[CrossRef]

Metrologia (1)

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Quart. Appl. Math. (1)

K. Levenberg, “A method for the solution of certain problems in least squares,” Quart. Appl. Math. 2, 164–168 (1944).

Rev. Geophys. Space Phys. (1)

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
[CrossRef]

SIAM J. Appl. Math. (1)

D. W. Marquardt, “An algorithm for the least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Other (22)

W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannerly, Numerical Recipes in Fortran, 2nd ed. (Cambridge University, Cambridge, UK, 1992).

T. B. McKee, R. I. Whitman, J. J. Lambiotte, “A technique to infer atmospheric water-vapor mixing ratio from measured horizon radiance profiles,” (NASA, Washington, D.C., 1969).

S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, New York, 1977).

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, San Diego, Calif., 1981).

W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic, San Diego, Calif., 1984).

D. S. Sivia, Data Analysis: A Bayesian Tutorial (Clarendon, Oxford, UK, 1998).

R. E. Kalman, “Algebraic aspects of the generalized inverse of a rectangular matrix,” in Proceedings of Advanced Seminar on Generalized Inverse and Applications, M. Z. Nashed, ed. (Academic, San Diego, Calif., 1976), pp. 111–124.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, San Diego, Calif., 1972).

L. Delbouille, G. Roland, “Assessement of finite field-of-view effects on MIPAS ILS and review of resolution enhancement techniques,” , Purchase Order 130605 (University of Liège, Liège, Belgium, 1995).

ESA, “ENVISAT—MIPAS: an instrument for atmospheric chemistry and climate research,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 2000).

M. Endemann, “MIPAS instrument concept and performance,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 29–43.

R. L. Lachance, “MIPAS level 1B algorithm technical baseline document: an overview,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 51–63.

T. von Clarmann, A. Dudhia, G. Echle, J.-M. Flaud, C. Harrold, B. Kerridge, K. Koutoulaki, A. Linden, M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martín-Torres, J. Reburn, J. Remedios, C. D. Rodgers, R. Siddans, R. J. Wells, G. Zaragoza, “Study on the simulation of atmospheric infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

G. Echle, T. von Clarmann, A. Dudhia, M. Lopez-Puertas, F. J. Martin-Torres, B. Kerridge, J.-M. Flaud, “Spectral microwindows for MIPAS-ENVISAT data analysis,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 2, pp. 481–485.

T. von Clarmann, A. Linden, G. Echle, A. Wegner, H. Fischer, M. Lopez-Puertas, in Proceedings of IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith, K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 557–560.

A. N. Tikhonov, V. Y. Arsenin, “Solutions of ill-posed problems,” (Winston, Washington, D.C., 1977).

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1998).

U.S. Government Document DMATR 8350.2, “Defense World Geodetic System 1984: its definition and relationship with local geodetic systems” (U.S. Department of Defense, Washington, D.C., 1994).

J. T. Houghton, The Physics of Atmospheres, 2nd ed. (Cambridge University, Cambridge, UK, 1986).

M. Lopez-Puertas, M. A. Lopez-Valverde, F. J. Martin-Torres, G. Zaragoza, A. Dudhia, T. von Clarmann, B. J. Kerridge, K. Koutoulaki, J.-M. Flaud, “Non-LTE studies for the MIPAS instrument,” in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESA Earth Science Division, ed. (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1999), Vol. 1, pp. 257–264.

D. P. Edwards, “GENLN2: a general line-by-line atmospheric transmittance and radiance model. Version 3.0 description and users guide,” (National Center for Atmospheric Research, Boulder, Colo., 1992).

P. Edwards, “High level algorithm definition document of the MIPAS reference forward model,” (European Space Agency, ESTEC, Noordwijk, The Netherlands, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

44-km tangent height spectral radiance from a microwindow (frequency range 693.45–693.725 cm-1) selected for p, T retrieval. The upper plot shows the high-resolution radiance (solid curve), the irregular grid points (pulse), and the convolved radiance (dashed curve). The lower plot shows the difference between the original and the interpolated radiances, on both the high-resolution grid (solid curve, left-hand axis) and the convolved radiances (dashed line curve, right-hand axis).

Fig. 2
Fig. 2

Differences between Curtis–Godson pressures and temperatures of the layers of the limb view with tangent altitude 30 km and the corresponding quantities of the same layers in the case of the lowest limb view (tangent altitude 6 km). On the left-hand axis the percentage differences on equivalent pressures (squares) are reported; on the right axis the absolute differences on equivalent temperature (triangles) are shown. The layers are counted from the tangent layer at 30 km and are 2-km thick.

Fig. 3
Fig. 3

Plot of the logarithm of the CO2 cross section (k) tabulated for the spectral interval 693.45–693.725 cm-1. Each of the 12 major cycles in the p, T axis corresponds to a different temperature, and within each are six different -ln(p) values varying from Lorentz to Doppler broadening.

Fig. 4
Fig. 4

44-km tangent height radiance from a microwindow (frequency range 693.45–693.725 cm-1) selected for p, T retrieval. The upper plot shows the high-resolution radiance obtained with LBL calculation of cross section (solid curve) and with the use of LUT’s (dotted curve), as well as the convolved radiance (dashed curve for LBL calculation and (pluses for use of LUT’s). The lower plot shows the difference between the two methods, before AILS convolution (solid curve, left-hand axis) and after AILS convolution (dashed curve, right-hand axis).

Fig. 5
Fig. 5

FOV convolved limb radiance values, at a significant frequency, calculated analytically at altitudes between 9.5 and 12.5 km versus corresponding reference values obtained by means of numerical convolution. The analytical convolution performed with a quadratic interpolation (made drawing a parabola through three spectra with tangent altitudes in the range of FOV pattern) is compared with the one obtained drawing a polynomial of the fourth degree (quartic interpolation) through five spectra with tangent altitudes in the FOV pattern range. The reference FOV convolved spectral values are computed simulating spectra at 100-m-distant tangent altitudes. The deviation of the curves from a straight line indicates the presence of an error in the interpolated spectrum and hence of a potential error in the computation of the analytical derivatives.

Fig. 6
Fig. 6

Results of test retrievals carried out starting from observations generated with the RFM. Each panel reports the reference profiles (profiles) with the corresponding retrieved data points (left-hand plots) as well as the deviations (dev) of the retrieved data points from the reference profiles (other plots). The estimated standard deviation (ESD) of the retrieved profiles is also reported as a solid line in both the center and the right-hand plots.

Tables (2)

Tables Icon

Table 1 MIPAS Performance Requirementsa

Tables Icon

Table 2 Run Time (s) for p, T and Five Target Species Retrieval (1 Iteration)

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

χ2=nTVn-1n.
χ2x=χ2x˜+χ2y+½ yT2χ2y,
χ2x=χ2x˜-2KTVn-1nTy+2yT×KTVn-1K-KxVn-1ny.
y=KTVn-1K-1KTVn-1n.
D=KTVn-1K-1KTVn-1.
xiter-xiter-1=Kiter-1TVn-1Kiter-1-1Kiter-1TVn-1niter-1,
xiter-xiter-1=Kiter-1TVn-1Kiter-1+λI-1Kiter-1TVn-1niter-1.
Vx=DcVnDcT=KcTVn-1Kc-1,
χ2=x-xaTVa-1x-xa+nTVn-1n,
xiter-xiter-1=Kiter-1TVn-1Kiter-1+Va-1-1Kiter-1TVn-1niter-1+Va-1(xiter-1-xa],
Vx=KcTVn-1Kc+Va-1-1.
xiter-xiter-1=Kiter-1TVn-1Kiter-1+K1TVn1-1K1-1Kiter-1TVn-1niter-1+K1TVn1-1n1.
Lν˜, zt=xix0Bν˜, xcν˜, xηx×exp-xx0 cν˜, xηxdxdx,
Sν˜, zt= Lν˜-ν˜, zt-zt×AILSν˜dν˜ FOVztdzt.
dx=11-n2rtrt2/n2rr21/2dr,
dy=dr(1+rt2n2r-n2rt/n2ry2)1/2,
Geg,l,t=zl-1zl GzXgzηpz, Tzdxtdzdzcolg,l,t,
colg,l,t=zl-1zl Xgzηpz, Tzdxtdzdz.
1000 spectral pts.×100 pressures×10 temperature pts.=106 grid pts.
K=UΣV,
KUΣV=UW,
L=l=1N Bl,t1-exp-τl,tk=l+1Nexp-τk,l,
τl,t=g=1Ngas cg,l,tcolg,l,t+ccontl,tcolairl,t,
L=l=1N/2 Bl,t1-exp-τl,t×1+exp-τl,tk=l+1N/2exp-2τk,tj=1l-1exp-τj,t.
dLdxn=j=1NdLdBjdBjdxn+dLdτjdτjdxn.
dLdτj=Bjk=jNexp-τk-i=1j-1 Bi×1-exp-τik=i+1Nexp-τk.
dτjdxcontn=dτjdccontjdccontjdxcontn=colairjdccontjdxcontn,
dτjdxg,n=dτjdcg,jdcg,jdxg,n+dτjd colg,jd colg,jdxg,n=colg,jdcg,jdxg,n+cg,jd colg,jdxg,n.
χ2xiter-χLIN2xiterχ2xiter<t1,
I-KDnTVn-1I-KDn.
Maxjxiter-1j-xiterjxiterj<t2.
zi=z1+RMj=1i-1T¯jgjlogpjpj+1,
z=Kzy.
xiter-xiter-1=Kiter-1TVn-1Kiter-1+KzTVz-1Kz-1Kiter-1TVn-1niter-1+KzTVz-1z.
χ2=nTVn-1n+μx-x0TLTLx-x0,
xiter-xiter-1=Kiter-1TVn-1Kiter-1+μLTL-1Kiter-1TVn-1niter-1+μLTLxiter-1-x0.
xiter-xiter-1=Kiter-1TVn-1Kiter-1+μLTL-1Kiter-1TVn-1niter-1.

Metrics