Abstract

A device made of a birefringent crystal for signal detection of magneto-optic (MO) disks is presented. The light beam from a MO disk is separated into two orthogonally polarized components at the surface of a birefringent prism. After these two components are reflected by the top and the bottom surfaces of the prism inside, at the detector they become sufficiently separated from each other for discrete detection, even though the prism is small. A method for calculating the light intensities and the positions of focused beams in a birefringent prism and the results of a fundamental experiment are presented.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Ophey, “Compact optical light paths,” Jpn. J. Appl. Phys. 32, 5252–5257 (1993).
    [CrossRef]
  2. M. Oka, A. Fukumoto, K. Osato, S. Kubota, “A new focus servo method for magneto-optical disk systems,” Jpn. J. Appl. Phys. 26, Suppl., 409–412 (1987).
  3. N. Nishi, K. Toyota, K. Okamatsu, K. Saito, K. Horie, K. Tanaka, K. Nemoto, “Integrated optical device—MiniDisclaser coupler,” in Optical Data Storage, Vol. 8 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 52–54.
  4. N. Nishi, K. Toyota, K. Saito, “A method to design an integrated MO head using a diffraction calculation in biaxial crystals,” in Technical Digest of Magneto Optical Recording International Symposium (The Magnetics Society of Japan, Monterey, Calif., 10–13 January 1999), paper 13-B-03.
  5. D. W. Berreman, “Optics in stratified and anisotropic media: 4*4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
    [CrossRef]
  6. M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2*2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
    [CrossRef]
  7. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  8. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 16, 786–805 (1989).
    [CrossRef]
  9. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1986).

1993 (1)

W. G. Ophey, “Compact optical light paths,” Jpn. J. Appl. Phys. 32, 5252–5257 (1993).
[CrossRef]

1990 (1)

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2*2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
[CrossRef]

1989 (1)

M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 16, 786–805 (1989).
[CrossRef]

1987 (1)

M. Oka, A. Fukumoto, K. Osato, S. Kubota, “A new focus servo method for magneto-optical disk systems,” Jpn. J. Appl. Phys. 26, Suppl., 409–412 (1987).

1972 (1)

Berreman, D. W.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1986).

Fukumoto, A.

M. Oka, A. Fukumoto, K. Osato, S. Kubota, “A new focus servo method for magneto-optical disk systems,” Jpn. J. Appl. Phys. 26, Suppl., 409–412 (1987).

Horie, K.

N. Nishi, K. Toyota, K. Okamatsu, K. Saito, K. Horie, K. Tanaka, K. Nemoto, “Integrated optical device—MiniDisclaser coupler,” in Optical Data Storage, Vol. 8 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 52–54.

Kubota, S.

M. Oka, A. Fukumoto, K. Osato, S. Kubota, “A new focus servo method for magneto-optical disk systems,” Jpn. J. Appl. Phys. 26, Suppl., 409–412 (1987).

Mansuripur, M.

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2*2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
[CrossRef]

M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 16, 786–805 (1989).
[CrossRef]

Nemoto, K.

N. Nishi, K. Toyota, K. Okamatsu, K. Saito, K. Horie, K. Tanaka, K. Nemoto, “Integrated optical device—MiniDisclaser coupler,” in Optical Data Storage, Vol. 8 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 52–54.

Nishi, N.

N. Nishi, K. Toyota, K. Okamatsu, K. Saito, K. Horie, K. Tanaka, K. Nemoto, “Integrated optical device—MiniDisclaser coupler,” in Optical Data Storage, Vol. 8 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 52–54.

N. Nishi, K. Toyota, K. Saito, “A method to design an integrated MO head using a diffraction calculation in biaxial crystals,” in Technical Digest of Magneto Optical Recording International Symposium (The Magnetics Society of Japan, Monterey, Calif., 10–13 January 1999), paper 13-B-03.

Oka, M.

M. Oka, A. Fukumoto, K. Osato, S. Kubota, “A new focus servo method for magneto-optical disk systems,” Jpn. J. Appl. Phys. 26, Suppl., 409–412 (1987).

Okamatsu, K.

N. Nishi, K. Toyota, K. Okamatsu, K. Saito, K. Horie, K. Tanaka, K. Nemoto, “Integrated optical device—MiniDisclaser coupler,” in Optical Data Storage, Vol. 8 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 52–54.

Ophey, W. G.

W. G. Ophey, “Compact optical light paths,” Jpn. J. Appl. Phys. 32, 5252–5257 (1993).
[CrossRef]

Osato, K.

M. Oka, A. Fukumoto, K. Osato, S. Kubota, “A new focus servo method for magneto-optical disk systems,” Jpn. J. Appl. Phys. 26, Suppl., 409–412 (1987).

Saito, K.

N. Nishi, K. Toyota, K. Okamatsu, K. Saito, K. Horie, K. Tanaka, K. Nemoto, “Integrated optical device—MiniDisclaser coupler,” in Optical Data Storage, Vol. 8 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 52–54.

N. Nishi, K. Toyota, K. Saito, “A method to design an integrated MO head using a diffraction calculation in biaxial crystals,” in Technical Digest of Magneto Optical Recording International Symposium (The Magnetics Society of Japan, Monterey, Calif., 10–13 January 1999), paper 13-B-03.

Tanaka, K.

N. Nishi, K. Toyota, K. Okamatsu, K. Saito, K. Horie, K. Tanaka, K. Nemoto, “Integrated optical device—MiniDisclaser coupler,” in Optical Data Storage, Vol. 8 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 52–54.

Toyota, K.

N. Nishi, K. Toyota, K. Okamatsu, K. Saito, K. Horie, K. Tanaka, K. Nemoto, “Integrated optical device—MiniDisclaser coupler,” in Optical Data Storage, Vol. 8 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 52–54.

N. Nishi, K. Toyota, K. Saito, “A method to design an integrated MO head using a diffraction calculation in biaxial crystals,” in Technical Digest of Magneto Optical Recording International Symposium (The Magnetics Society of Japan, Monterey, Calif., 10–13 January 1999), paper 13-B-03.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1986).

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

J. Appl. Phys. (1)

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2*2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 16, 786–805 (1989).
[CrossRef]

Jpn. J. Appl. Phys. (2)

W. G. Ophey, “Compact optical light paths,” Jpn. J. Appl. Phys. 32, 5252–5257 (1993).
[CrossRef]

M. Oka, A. Fukumoto, K. Osato, S. Kubota, “A new focus servo method for magneto-optical disk systems,” Jpn. J. Appl. Phys. 26, Suppl., 409–412 (1987).

Other (4)

N. Nishi, K. Toyota, K. Okamatsu, K. Saito, K. Horie, K. Tanaka, K. Nemoto, “Integrated optical device—MiniDisclaser coupler,” in Optical Data Storage, Vol. 8 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 52–54.

N. Nishi, K. Toyota, K. Saito, “A method to design an integrated MO head using a diffraction calculation in biaxial crystals,” in Technical Digest of Magneto Optical Recording International Symposium (The Magnetics Society of Japan, Monterey, Calif., 10–13 January 1999), paper 13-B-03.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1986).

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Typical arrangement of optics for MO pickups.

Fig. 2
Fig. 2

Hybrid MPD presented by Oka et al.

Fig. 3
Fig. 3

Integrated optical head for compact disks that has been used commercially.

Fig. 4
Fig. 4

Calculated optical paths of our device with a ray-tracing technique based on the Poynting vector. (a) Total optical system. (b) Optical paths around the trapezoidal prism made of LiNbO3.

Fig. 5
Fig. 5

Layout of the detector patterns used for calculation and fabrication of our device.

Fig. 6
Fig. 6

Calculated spot diagrams corresponding to the arrangements shown in Fig. 9.

Fig. 7
Fig. 7

Schematic of a ray in birefringent media. k-vector is normal to the wave front, but the Poynting vector is not parallel to the wave front in general.

Fig. 8
Fig. 8

Calculated light intensities on the detector plane corresponding to the arrangements shown in Fig. 9.

Fig. 9
Fig. 9

Three examples of the arrangements of c axes in the trapezoidal birefringent prism.

Fig. 10
Fig. 10

Photograph of our device used for the experiment. A LiNbO3 prism is bonded on a p-i-n photodiode.

Fig. 11
Fig. 11

Optical setup to examine our device in MO signal detection.

Fig. 12
Fig. 12

Photograph of the readout signal of our device from a MO disk.

Fig. 13
Fig. 13

Schematic of the coordinate system for the diffraction calculation we used.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

s=e×k×e.
e=kxk2-ω2μx, kyk2-ω2μy, kzk2-ω2μz, k2=kx2+ky2+kz2.
=x000y000z.
EDX, Y=iÑλz0-+-+EPX0, Y0×exp2πiX0X+Y0YdX0dY0,
Ex, y, z=-+-+E˜kx, ky×expixkx+yky+zkzdkxdky.
EPx0, y0=-+-+E˜kx, ky×expix0kx+y0kydkxdky,
EDx, y, z0=14π2-+-+-+-+EPx0, y0×expix-x0kx+y-y0ky+z0kzdkxdkydx0dy0.
gkx, ky=x-x0kx+y-y0ky+z0kzkx, ky,
fkx, ky, kz=kx2k2-ω2μx+kz2k2-ω2μy+kz2k2-ω2μz-1=0.
EDx, y, z0=iσ2παβ-γ21/2-+-+EPx0, y0×expix-x0kx0+y-y0ky0+z0kz0dx0dy0, σ=+1αβ-γ2>0,α>0-1αβ-γ2>0,α<0-2αβ-γ2<0.
gkx, kygkx0, ky0+½ αkx-kx02+½ βky-ky02+γkx-kx0ky-ky0,
gkxkx=kx0=0, gkyky=ky0=0.
fk=fkx, fky, fkz=-2s.
gkx=x-x0+z0kzkx=x-x0+z0sxsz=0, gky=y-y0+z0sysz=0,
x0-x, y0-y, z0=Cs,  C, constant.
g0r=r·k0=x-x0kx0+y-y0ky0+z0kz0, r=r0-Δr,  r0=x0, y0, z0,  Δr=x, y, 0.
g0rg0r0-r0k0r Δr-k0r0·Δr=g0r0-k0r0·Δr.
df=fkksds=-2sksds=0,  sks=rkr=0.
kx0-Ñx0z0,  ky0-Ñy0z0,  αβ-γ2z0Ñ2,
EDx, y=iÑλz0-+-+EPx0, y0×exp-2πiÑλz0xx0+yy0dx0dy0.

Metrics