Abstract

Confocal microscopy and white-light interferometry are two promising methods for the three-dimensional microstructure analysis of technical and biologic specimens. For both methods the specimen is scanned through the focus position by means of an actuator. A large series of intensity frames is acquired. These data are used for the final calculation of the topography. We demonstrate that the multimedia extended (MMX) instruction set, which is implemented in modern Intel microprocessors, can be used for effective real-time preprocessing and for fast evaluation algorithms. So this new technique enables the implementation of more-complex algorithms with acceptable run times even on standard computer technology. The possibilities of the MMX instruction set are discussed for confocal microscopy and for white-light interferometry.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Jordan, M. Wegner, H. J. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
    [CrossRef]
  2. R. Windecker, H. J. Tiziani, “Optical roughness measurements using white-light interferometry,” Opt. Eng. 38, 1081–1087 (1999).
    [CrossRef]
  3. Intel MMX Technology Overview, Order No. 243081–002 (Intel Corporation, http://developer.intel.com , 1996), pp. 1–17.
  4. H. J. Tiziani, R. Achi, R. N. Krämer, L. Wiegers, “Theoretical analysis of confocal microscopy with microlenses,” Appl. Opt. 35, 120–125 (1996).
    [CrossRef] [PubMed]
  5. L. Deck, “Method and apparatus for the rapid acquisition of data in coherence scanning interferometry,” U.S. patent5,402,234 (28March1995).
  6. L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  7. R. J. Recknagel, G. Notni, “Measurement and analysis of microtopography using wavelet methods,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 133–143 (1997).
    [CrossRef]
  8. R. Windecker, M. Fleischer, H. J. Tiziani, “White-light interferometry with an extended zoom range,” J. Mod. Opt. 46, 1123–1135 (1999).
  9. P. Sandoz, R. Devillers, A. Plata ,“Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt. 44, 519–534 (1997).
    [CrossRef]

1999 (2)

R. Windecker, H. J. Tiziani, “Optical roughness measurements using white-light interferometry,” Opt. Eng. 38, 1081–1087 (1999).
[CrossRef]

R. Windecker, M. Fleischer, H. J. Tiziani, “White-light interferometry with an extended zoom range,” J. Mod. Opt. 46, 1123–1135 (1999).

1998 (1)

H. J. Jordan, M. Wegner, H. J. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

1997 (1)

P. Sandoz, R. Devillers, A. Plata ,“Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt. 44, 519–534 (1997).
[CrossRef]

1996 (1)

1994 (1)

Achi, R.

de Groot, P.

Deck, L.

L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
[CrossRef] [PubMed]

L. Deck, “Method and apparatus for the rapid acquisition of data in coherence scanning interferometry,” U.S. patent5,402,234 (28March1995).

Devillers, R.

P. Sandoz, R. Devillers, A. Plata ,“Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt. 44, 519–534 (1997).
[CrossRef]

Fleischer, M.

R. Windecker, M. Fleischer, H. J. Tiziani, “White-light interferometry with an extended zoom range,” J. Mod. Opt. 46, 1123–1135 (1999).

Jordan, H. J.

H. J. Jordan, M. Wegner, H. J. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

Krämer, R. N.

Notni, G.

R. J. Recknagel, G. Notni, “Measurement and analysis of microtopography using wavelet methods,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 133–143 (1997).
[CrossRef]

Plata, A.

P. Sandoz, R. Devillers, A. Plata ,“Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt. 44, 519–534 (1997).
[CrossRef]

Recknagel, R. J.

R. J. Recknagel, G. Notni, “Measurement and analysis of microtopography using wavelet methods,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 133–143 (1997).
[CrossRef]

Sandoz, P.

P. Sandoz, R. Devillers, A. Plata ,“Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt. 44, 519–534 (1997).
[CrossRef]

Tiziani, H. J.

R. Windecker, M. Fleischer, H. J. Tiziani, “White-light interferometry with an extended zoom range,” J. Mod. Opt. 46, 1123–1135 (1999).

R. Windecker, H. J. Tiziani, “Optical roughness measurements using white-light interferometry,” Opt. Eng. 38, 1081–1087 (1999).
[CrossRef]

H. J. Jordan, M. Wegner, H. J. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

H. J. Tiziani, R. Achi, R. N. Krämer, L. Wiegers, “Theoretical analysis of confocal microscopy with microlenses,” Appl. Opt. 35, 120–125 (1996).
[CrossRef] [PubMed]

Wegner, M.

H. J. Jordan, M. Wegner, H. J. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

Wiegers, L.

Windecker, R.

R. Windecker, H. J. Tiziani, “Optical roughness measurements using white-light interferometry,” Opt. Eng. 38, 1081–1087 (1999).
[CrossRef]

R. Windecker, M. Fleischer, H. J. Tiziani, “White-light interferometry with an extended zoom range,” J. Mod. Opt. 46, 1123–1135 (1999).

Appl. Opt. (2)

J. Mod. Opt. (2)

R. Windecker, M. Fleischer, H. J. Tiziani, “White-light interferometry with an extended zoom range,” J. Mod. Opt. 46, 1123–1135 (1999).

P. Sandoz, R. Devillers, A. Plata ,“Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt. 44, 519–534 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

H. J. Jordan, M. Wegner, H. J. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

Opt. Eng. (1)

R. Windecker, H. J. Tiziani, “Optical roughness measurements using white-light interferometry,” Opt. Eng. 38, 1081–1087 (1999).
[CrossRef]

Other (3)

Intel MMX Technology Overview, Order No. 243081–002 (Intel Corporation, http://developer.intel.com , 1996), pp. 1–17.

L. Deck, “Method and apparatus for the rapid acquisition of data in coherence scanning interferometry,” U.S. patent5,402,234 (28March1995).

R. J. Recknagel, G. Notni, “Measurement and analysis of microtopography using wavelet methods,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 133–143 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Packed unsigned subtraction with saturation (psubus).

Fig. 2
Fig. 2

Setup of the confocal microscope.

Fig. 3
Fig. 3

Principle of acquisition and evaluation of the confocal signal.

Fig. 4
Fig. 4

Setup of the white-light interferometer.

Fig. 5
Fig. 5

Evaluation of the interferometer signal.

Fig. 6
Fig. 6

Block diagram of the confocal acquisition stage.

Fig. 7
Fig. 7

Combining MMX instructions.

Fig. 8
Fig. 8

Structogram of the white-light signal evaluation. IIR, infinite impulse response.

Fig. 9
Fig. 9

Block diagram of the interferometric acquisition stage.

Fig. 10
Fig. 10

Turned surface measured with the confocal setup.

Fig. 11
Fig. 11

Section through the confocal measurement.

Fig. 12
Fig. 12

Etched grating measured with the white-light interferometer.

Fig. 13
Fig. 13

Section through the white-light interferometer measurement.

Tables (1)

Tables Icon

Table 1 MMX Instruction Set

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z0=z=0nzIzz=0nIz
O0=0,  On=kIn-In-1,  k=215-1/max.
O0=k2I0,  On=k1On-1+k2In, 0<k1<1, k2=1/1-k1.
tan δ=z=0nI90°zz=0nI0°z,
ϕ=δ-ωcz0 mod 2π
z0=z0-ϕ2πλ2.

Metrics