Abstract

A previous method of obtaining scale-invariance detection with white-light illumination has been improved on. We were able to detect different scaled versions of the target up to a magnification factor equal to 2. We simultaneously detected several versions in the same scene, because each scale factor is codified in a different wavelength. Experimental results demonstrate the proposed technique and show the utility of the method.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  2. D. Casasent, D. Psaltis, “Scale invariant optical correlation using Mellin transform,” Opt. Commun. 17, 59–63 (1976).
    [CrossRef]
  3. D. Mendlovic, E. Marom, N. Konforti, “Shift and scale invariant pattern recognition using Mellin radial harmonics,” Opt. Commun. 67, 172–176 (1988).
    [CrossRef]
  4. J. Rosen, J. Shamir, “Scale-invariant pattern recognition with logarithmic radial harmonic filters,” Appl. Opt. 28, 240–244 (1989).
    [CrossRef] [PubMed]
  5. D. Cojoc, M. T. Molina, J. García, C. Ferreira, “Coordinate-transformed filter for shift-invariant and scale-invariant pattern recognition,” Appl. Opt. 36, 4812–4815 (1997).
    [CrossRef] [PubMed]
  6. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
    [CrossRef] [PubMed]
  7. D. Gabor, “Laser speckle and its elimination,” IBM J. Res. Dev. 14, 509–511 (1970).
    [CrossRef]
  8. G. M. Morris, N. George, “Space and wavelength dependence of a dispersion-compensated matched filter,” Appl. Opt. 19, 3843–3850 (1980).
    [CrossRef] [PubMed]
  9. K. Mersereau, G. M. Morris, “Scale, rotation, and shift invariant image recognition,” Appl. Opt. 25, 2338–2342 (1986).
    [CrossRef] [PubMed]
  10. Z. Zalevsky, D. Mendlovic, J. García, “Invariant pattern recognition by use of wavelength multiplexing,” Appl. Opt. 36, 1059–1063 (1997).
    [CrossRef] [PubMed]
  11. D. Mendlovic, J. García, Z. Zalevsky, E. Marom, D. Mas, C. Ferreira, A. W. Lohmann, “Wavelength-multiplexing system for single-mode image transmission,” Appl. Opt. 36, 8474–8480 (1997).
    [CrossRef]
  12. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
    [CrossRef] [PubMed]

1997

1989

1988

D. Mendlovic, E. Marom, N. Konforti, “Shift and scale invariant pattern recognition using Mellin radial harmonics,” Opt. Commun. 67, 172–176 (1988).
[CrossRef]

1986

1984

1980

1976

D. Casasent, D. Psaltis, “Scale invariant optical correlation using Mellin transform,” Opt. Commun. 17, 59–63 (1976).
[CrossRef]

1970

D. Gabor, “Laser speckle and its elimination,” IBM J. Res. Dev. 14, 509–511 (1970).
[CrossRef]

1967

1964

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Casasent, D.

D. Casasent, D. Psaltis, “Scale invariant optical correlation using Mellin transform,” Opt. Commun. 17, 59–63 (1976).
[CrossRef]

Cojoc, D.

Ferreira, C.

Gabor, D.

D. Gabor, “Laser speckle and its elimination,” IBM J. Res. Dev. 14, 509–511 (1970).
[CrossRef]

García, J.

George, N.

Gianino, P. D.

Horner, J. L.

Konforti, N.

D. Mendlovic, E. Marom, N. Konforti, “Shift and scale invariant pattern recognition using Mellin radial harmonics,” Opt. Commun. 67, 172–176 (1988).
[CrossRef]

Lohmann, A. W.

Marom, E.

D. Mendlovic, J. García, Z. Zalevsky, E. Marom, D. Mas, C. Ferreira, A. W. Lohmann, “Wavelength-multiplexing system for single-mode image transmission,” Appl. Opt. 36, 8474–8480 (1997).
[CrossRef]

D. Mendlovic, E. Marom, N. Konforti, “Shift and scale invariant pattern recognition using Mellin radial harmonics,” Opt. Commun. 67, 172–176 (1988).
[CrossRef]

Mas, D.

Mendlovic, D.

Mersereau, K.

Molina, M. T.

Morris, G. M.

Paris, D. P.

Psaltis, D.

D. Casasent, D. Psaltis, “Scale invariant optical correlation using Mellin transform,” Opt. Commun. 17, 59–63 (1976).
[CrossRef]

Rosen, J.

Shamir, J.

VanderLugt, A.

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Zalevsky, Z.

Appl. Opt.

IBM J. Res. Dev.

D. Gabor, “Laser speckle and its elimination,” IBM J. Res. Dev. 14, 509–511 (1970).
[CrossRef]

IEEE Trans. Inf. Theory

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Opt. Commun.

D. Casasent, D. Psaltis, “Scale invariant optical correlation using Mellin transform,” Opt. Commun. 17, 59–63 (1976).
[CrossRef]

D. Mendlovic, E. Marom, N. Konforti, “Shift and scale invariant pattern recognition using Mellin radial harmonics,” Opt. Commun. 67, 172–176 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sketch of the experimental optical setup.

Fig. 2
Fig. 2

Input scene composed of different scaled versions of the B, G, and X characters.

Fig. 3
Fig. 3

Chromatically compensated correlation output obtained in the CCD camera. Each correlation peak indicates the presence of a different scaled version of the G character.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ux3, y3; λ=tλ0z0x3λz2, λ0z0y3λz2  sz1x3z2, z1y3z2 δx3, y3-αλz2,
Ux4, y4; λ=t˜*x4λ0z0M, y4λ0z0Ms˜x4λz1M, y4λz1M×exp-i2παy4M.
p=Mα=-z4λ0z2+z3sin θ.
Ux4, y4; λ=t˜*x4λ0z0M, y4λ0z0Ms˜x4λz1M, y4λz1M×exp-i2πα y4Mn=-+expi2πnα y4M=t˜*x4λ0z0M, y4λ0z0Ms˜x4λz1M, y4λz1M×n=-+expi2πn-1αy4M.
Ux5, y5; λ=n=-+tλ0z0Mx5λz5, λ0z0My5λz5 sz1Mx5z5, z1My5z5 δx5, y5-n-1αλz5M.
Un=1x5, y5; λ=tλ0z0x5λ, λ0z0y5λ  sz1x5, z1y5.
λ=λ0z0m/z1.

Metrics