Abstract

Both a nonfocusing and a focusing preferential-order volume grating waveguide coupler were designed, fabricated, and tested. These volume grating couplers are designed to outcouple a 633-nm wave guided in an adjacent polyimide waveguide film. The slanted-fringe volume gratings are recorded holographically by the interference of two 364-nm waves. The dynamics of the holographic photopolymer HRF600X001 are investigated in relation to the interaction with the guided wave. The fabricated couplers exhibited a preferential coupling of 98%, a spatial coupling rate of 3.6 mm-1, and a coupling efficiency of 95%. The focusing grating coupler focused the outcoupled beam to a focal line with a full width at half-maximum of 10.49 µm located 25 mm above the grating.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Streibl, R. Volkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
    [CrossRef]
  2. S. H. Song, E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995).
    [CrossRef] [PubMed]
  3. C. Zhao, R. Chen, “Performance consideration of three-dimensional optoelectronic interconnection for intra-multichip-module clock signal distribution,” Appl. Opt. 36, 2537–2544 (1997).
    [CrossRef] [PubMed]
  4. S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
    [CrossRef]
  5. S. Nishiwaki, J. Asada, S. Uchida, “Optical head employing a concentric-circular focusing grating coupler,” Appl. Opt. 33, 1819–1827 (1994).
    [CrossRef] [PubMed]
  6. S. Nishiwaki, Y. Taketomi, S. Uchida, T. Tomita, J. Asada, “Optical head apparatus including a waveguide layer with concentric or spiral periodic structure,” U.S. patent5,200,939 (6April1993).
  7. H. Sunagawa, T. Suhara, H. Nishihara, “Optical pickup apparatus for detecting and correcting focusing and tracking errors in detected recorded signals,” U.S. patent5,153,860 (6October1992).
  8. N. Eriksson, M. Hagberg, A. Larsson, “Highly directional grating outcouplers with tailorable radiation characteristics,” IEEE J. Quantum Electron. 32, 1038–1047 (1996).
    [CrossRef]
  9. S. Kristjansson, M. Li, N. Eriksson, K. Killius, A. Larsson, “Circular grating coupled DBR laser with integrated focusing outcoupler,” IEEE Photonics Technol. Lett. 9, 416–418 (1997).
    [CrossRef]
  10. S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
    [CrossRef]
  11. S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photonics Technol. Lett. 6, 239–241 (1994).
    [CrossRef]
  12. T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
    [CrossRef]
  13. T. Suhara, N. Nozaki, H. Nishihara, “An integrated acoustooptic printer head,” in Proceedings of the Fourth European Conference on Integrated Optics (Glasgow, Scotland, 11–13 May 1987), Vol. 87, pp. 119–122.
  14. N. Eriksson, M. Hagberg, A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7, 1394–1396 (1995).
    [CrossRef]
  15. R. L. Roncone, L. Li, K. A. Bates, J. J. Burke, L. Weisenbach, B. Zelinski, “Design and fabrication of a single leakage channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993).
    [CrossRef] [PubMed]
  16. R. L. Roncone, L. Li, J. C. Brazas, “Single-leakage-channel grating couplers: comparison of theoretical and experimental branching ratios,” Opt. Lett. 18, 1919–1921 (1993).
    [CrossRef] [PubMed]
  17. I. A. Avrutskii, A. S. Svakhin, V. A. Sychugov, “An efficient grating coupler,” Zh. Tekh. Fiz. 59, 61–65 (1989).
  18. I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
    [CrossRef] [PubMed]
  19. J. C. Brazas, L. Li, A. L. Mckeon, “High-efficiency input coupling into optical waveguides using gratings with double-surface corrugation,” Appl. Opt. 34, 604–609 (1995).
    [CrossRef] [PubMed]
  20. M. Hagberg, T. Kjellberg, N. Eriksson, A. Larsson, “Demonstration of blazing effect in second order gratings under resonant condition,” Electron. Lett. 30, 410–412 (1994).
    [CrossRef]
  21. M. Li, S. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profiles,” Opt. Eng. 35, 3101–3106 (1996).
    [CrossRef]
  22. T. Liao, S. Sheard, M. Li, J. Zhu, P. Prewett, “High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).
    [CrossRef]
  23. W. Driemeier, “Bragg-effect grating couplers integrated in multicomponent polymeric waveguides,” Opt. Lett. 15, 725–727 (1990).
    [CrossRef] [PubMed]
  24. Q. Huang, P. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
    [CrossRef] [PubMed]
  25. V. Weiss, I. Finkelstein, E. Millul, S. Ruschin, “Coupling and waveguiding in photopolymers,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communications, W. F. Frank, ed., Proc. SPIE3135, 136–143 (1997).
    [CrossRef]
  26. W. Gambogi, W. Gerstadt, S. Mackara, A. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics: 4th in a Series, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
  27. S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Design of a high-efficiency volume grating coupler for line focusing,” Appl. Opt. 37, 2278–2287 (1998).
    [CrossRef]
  28. S. Schultz, E. N. Glytsis, T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999).
    [CrossRef]
  29. U. Rhee, H. Caulfield, J. Shamir, C. Vikram, M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
    [CrossRef]
  30. U. Rhee, H. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
    [CrossRef] [PubMed]
  31. G. Gavrilov, I. Maurer, K. Muratikov, S. Pisarevskaya, G. Sotnikova, “Fringe effects during recording transmission holographic gratings in photopolymers,” Opt. Spectrosc. 78, 280–282 (1995).
  32. J. Y. Son, V. V. Smirnov, H. W. Jeon, I. I. Afanasyev, “Influence of Mylar film on the performance of hologram made with DuPont photopolymer film,” in Holographic and Diffractive Techniques, G. J. Drausmann, ed., Proc. SPIE2951, 74–79 (1996).
    [CrossRef]
  33. S. Piazzolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 14, 1075–1077 (1995).
  34. R. K. Kostuk, “Dynamic hologram recording characteristics in DuPont photopolymers,” Appl. Opt. 38, 1357–1363 (1999).
    [CrossRef]
  35. S. M. Schultz, “High efficiency volume grating coupler,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, 1999).
  36. C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
    [CrossRef]
  37. Zemax Optical Design Program User’s Guide (Focus Software, Inc., P.O. Box 18228, Tucson, Ariz. 85731, 1999).
  38. S. Solimeno, B. Crosignani, P. D. Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986), Chap. 8.

1999 (2)

1998 (1)

1997 (5)

Q. Huang, P. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
[CrossRef] [PubMed]

C. Zhao, R. Chen, “Performance consideration of three-dimensional optoelectronic interconnection for intra-multichip-module clock signal distribution,” Appl. Opt. 36, 2537–2544 (1997).
[CrossRef] [PubMed]

S. Kristjansson, M. Li, N. Eriksson, K. Killius, A. Larsson, “Circular grating coupled DBR laser with integrated focusing outcoupler,” IEEE Photonics Technol. Lett. 9, 416–418 (1997).
[CrossRef]

T. Liao, S. Sheard, M. Li, J. Zhu, P. Prewett, “High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).
[CrossRef]

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

1996 (2)

M. Li, S. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profiles,” Opt. Eng. 35, 3101–3106 (1996).
[CrossRef]

N. Eriksson, M. Hagberg, A. Larsson, “Highly directional grating outcouplers with tailorable radiation characteristics,” IEEE J. Quantum Electron. 32, 1038–1047 (1996).
[CrossRef]

1995 (7)

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

N. Eriksson, M. Hagberg, A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7, 1394–1396 (1995).
[CrossRef]

G. Gavrilov, I. Maurer, K. Muratikov, S. Pisarevskaya, G. Sotnikova, “Fringe effects during recording transmission holographic gratings in photopolymers,” Opt. Spectrosc. 78, 280–282 (1995).

S. Piazzolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 14, 1075–1077 (1995).

U. Rhee, H. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

S. H. Song, E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995).
[CrossRef] [PubMed]

J. C. Brazas, L. Li, A. L. Mckeon, “High-efficiency input coupling into optical waveguides using gratings with double-surface corrugation,” Appl. Opt. 34, 604–609 (1995).
[CrossRef] [PubMed]

1994 (3)

S. Nishiwaki, J. Asada, S. Uchida, “Optical head employing a concentric-circular focusing grating coupler,” Appl. Opt. 33, 1819–1827 (1994).
[CrossRef] [PubMed]

M. Hagberg, T. Kjellberg, N. Eriksson, A. Larsson, “Demonstration of blazing effect in second order gratings under resonant condition,” Electron. Lett. 30, 410–412 (1994).
[CrossRef]

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photonics Technol. Lett. 6, 239–241 (1994).
[CrossRef]

1993 (4)

N. Streibl, R. Volkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
[CrossRef]

U. Rhee, H. Caulfield, J. Shamir, C. Vikram, M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

R. L. Roncone, L. Li, J. C. Brazas, “Single-leakage-channel grating couplers: comparison of theoretical and experimental branching ratios,” Opt. Lett. 18, 1919–1921 (1993).
[CrossRef] [PubMed]

R. L. Roncone, L. Li, K. A. Bates, J. J. Burke, L. Weisenbach, B. Zelinski, “Design and fabrication of a single leakage channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993).
[CrossRef] [PubMed]

1990 (2)

1989 (1)

I. A. Avrutskii, A. S. Svakhin, V. A. Sychugov, “An efficient grating coupler,” Zh. Tekh. Fiz. 59, 61–65 (1989).

1988 (1)

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

1986 (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

Afanasyev, I. I.

J. Y. Son, V. V. Smirnov, H. W. Jeon, I. I. Afanasyev, “Influence of Mylar film on the performance of hologram made with DuPont photopolymer film,” in Holographic and Diffractive Techniques, G. J. Drausmann, ed., Proc. SPIE2951, 74–79 (1996).
[CrossRef]

Asada, J.

S. Nishiwaki, J. Asada, S. Uchida, “Optical head employing a concentric-circular focusing grating coupler,” Appl. Opt. 33, 1819–1827 (1994).
[CrossRef] [PubMed]

S. Nishiwaki, Y. Taketomi, S. Uchida, T. Tomita, J. Asada, “Optical head apparatus including a waveguide layer with concentric or spiral periodic structure,” U.S. patent5,200,939 (6April1993).

Ashley, P.

Avrutskii, I. A.

I. A. Avrutskii, A. S. Svakhin, V. A. Sychugov, “An efficient grating coupler,” Zh. Tekh. Fiz. 59, 61–65 (1989).

Avrutsky, I. A.

Bates, K. A.

Brazas, J. C.

Burke, J. J.

Caulfield, H.

U. Rhee, H. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U. Rhee, H. Caulfield, J. Shamir, C. Vikram, M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Chen, R.

Chen, R. T.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Crosignani, B.

S. Solimeno, B. Crosignani, P. D. Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986), Chap. 8.

Driemeier, W.

Eriksson, N.

S. Kristjansson, M. Li, N. Eriksson, K. Killius, A. Larsson, “Circular grating coupled DBR laser with integrated focusing outcoupler,” IEEE Photonics Technol. Lett. 9, 416–418 (1997).
[CrossRef]

N. Eriksson, M. Hagberg, A. Larsson, “Highly directional grating outcouplers with tailorable radiation characteristics,” IEEE J. Quantum Electron. 32, 1038–1047 (1996).
[CrossRef]

N. Eriksson, M. Hagberg, A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7, 1394–1396 (1995).
[CrossRef]

M. Hagberg, T. Kjellberg, N. Eriksson, A. Larsson, “Demonstration of blazing effect in second order gratings under resonant condition,” Electron. Lett. 30, 410–412 (1994).
[CrossRef]

Finkelstein, I.

V. Weiss, I. Finkelstein, E. Millul, S. Ruschin, “Coupling and waveguiding in photopolymers,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communications, W. F. Frank, ed., Proc. SPIE3135, 136–143 (1997).
[CrossRef]

Fu, Z.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Gambogi, W.

W. Gambogi, W. Gerstadt, S. Mackara, A. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics: 4th in a Series, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).

Gavrilov, G.

G. Gavrilov, I. Maurer, K. Muratikov, S. Pisarevskaya, G. Sotnikova, “Fringe effects during recording transmission holographic gratings in photopolymers,” Opt. Spectrosc. 78, 280–282 (1995).

Gaylord, T. K.

Gerstadt, W.

W. Gambogi, W. Gerstadt, S. Mackara, A. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics: 4th in a Series, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).

Glytsis, E. N.

Habel, P.

N. Streibl, R. Volkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
[CrossRef]

Hagberg, M.

N. Eriksson, M. Hagberg, A. Larsson, “Highly directional grating outcouplers with tailorable radiation characteristics,” IEEE J. Quantum Electron. 32, 1038–1047 (1996).
[CrossRef]

N. Eriksson, M. Hagberg, A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7, 1394–1396 (1995).
[CrossRef]

M. Hagberg, T. Kjellberg, N. Eriksson, A. Larsson, “Demonstration of blazing effect in second order gratings under resonant condition,” Electron. Lett. 30, 410–412 (1994).
[CrossRef]

Hirata, T.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Huang, Q.

Iio, S.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Jenkins, B. K.

S. Piazzolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 14, 1075–1077 (1995).

Jeon, H. W.

J. Y. Son, V. V. Smirnov, H. W. Jeon, I. I. Afanasyev, “Influence of Mylar film on the performance of hologram made with DuPont photopolymer film,” in Holographic and Diffractive Techniques, G. J. Drausmann, ed., Proc. SPIE2951, 74–79 (1996).
[CrossRef]

Killius, K.

S. Kristjansson, M. Li, N. Eriksson, K. Killius, A. Larsson, “Circular grating coupled DBR laser with integrated focusing outcoupler,” IEEE Photonics Technol. Lett. 9, 416–418 (1997).
[CrossRef]

Kjellberg, T.

M. Hagberg, T. Kjellberg, N. Eriksson, A. Larsson, “Demonstration of blazing effect in second order gratings under resonant condition,” Electron. Lett. 30, 410–412 (1994).
[CrossRef]

Kostuk, R. K.

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

Kristjansson, S.

S. Kristjansson, M. Li, N. Eriksson, K. Killius, A. Larsson, “Circular grating coupled DBR laser with integrated focusing outcoupler,” IEEE Photonics Technol. Lett. 9, 416–418 (1997).
[CrossRef]

Larsson, A.

S. Kristjansson, M. Li, N. Eriksson, K. Killius, A. Larsson, “Circular grating coupled DBR laser with integrated focusing outcoupler,” IEEE Photonics Technol. Lett. 9, 416–418 (1997).
[CrossRef]

N. Eriksson, M. Hagberg, A. Larsson, “Highly directional grating outcouplers with tailorable radiation characteristics,” IEEE J. Quantum Electron. 32, 1038–1047 (1996).
[CrossRef]

N. Eriksson, M. Hagberg, A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7, 1394–1396 (1995).
[CrossRef]

M. Hagberg, T. Kjellberg, N. Eriksson, A. Larsson, “Demonstration of blazing effect in second order gratings under resonant condition,” Electron. Lett. 30, 410–412 (1994).
[CrossRef]

Lee, E. H.

Li, L.

Li, M.

S. Kristjansson, M. Li, N. Eriksson, K. Killius, A. Larsson, “Circular grating coupled DBR laser with integrated focusing outcoupler,” IEEE Photonics Technol. Lett. 9, 416–418 (1997).
[CrossRef]

T. Liao, S. Sheard, M. Li, J. Zhu, P. Prewett, “High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).
[CrossRef]

M. Li, S. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profiles,” Opt. Eng. 35, 3101–3106 (1996).
[CrossRef]

Liao, T.

T. Liao, S. Sheard, M. Li, J. Zhu, P. Prewett, “High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).
[CrossRef]

Lindlein, N.

N. Streibl, R. Volkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
[CrossRef]

Liu, J.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Mackara, S.

W. Gambogi, W. Gerstadt, S. Mackara, A. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics: 4th in a Series, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).

Maurer, I.

G. Gavrilov, I. Maurer, K. Muratikov, S. Pisarevskaya, G. Sotnikova, “Fringe effects during recording transmission holographic gratings in photopolymers,” Opt. Spectrosc. 78, 280–282 (1995).

Mckeon, A. L.

Millul, E.

V. Weiss, I. Finkelstein, E. Millul, S. Ruschin, “Coupling and waveguiding in photopolymers,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communications, W. F. Frank, ed., Proc. SPIE3135, 136–143 (1997).
[CrossRef]

Mirsalehi, M.

U. Rhee, H. Caulfield, J. Shamir, C. Vikram, M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Muratikov, K.

G. Gavrilov, I. Maurer, K. Muratikov, S. Pisarevskaya, G. Sotnikova, “Fringe effects during recording transmission holographic gratings in photopolymers,” Opt. Spectrosc. 78, 280–282 (1995).

Nishihara, H.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photonics Technol. Lett. 6, 239–241 (1994).
[CrossRef]

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

T. Suhara, N. Nozaki, H. Nishihara, “An integrated acoustooptic printer head,” in Proceedings of the Fourth European Conference on Integrated Optics (Glasgow, Scotland, 11–13 May 1987), Vol. 87, pp. 119–122.

H. Sunagawa, T. Suhara, H. Nishihara, “Optical pickup apparatus for detecting and correcting focusing and tracking errors in detected recorded signals,” U.S. patent5,153,860 (6October1992).

Nishiwaki, S.

S. Nishiwaki, J. Asada, S. Uchida, “Optical head employing a concentric-circular focusing grating coupler,” Appl. Opt. 33, 1819–1827 (1994).
[CrossRef] [PubMed]

S. Nishiwaki, Y. Taketomi, S. Uchida, T. Tomita, J. Asada, “Optical head apparatus including a waveguide layer with concentric or spiral periodic structure,” U.S. patent5,200,939 (6April1993).

Nozaki, N.

T. Suhara, N. Nozaki, H. Nishihara, “An integrated acoustooptic printer head,” in Proceedings of the Fourth European Conference on Integrated Optics (Glasgow, Scotland, 11–13 May 1987), Vol. 87, pp. 119–122.

Parriaux, O.

Piazzolla, S.

S. Piazzolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 14, 1075–1077 (1995).

Pisarevskaya, S.

G. Gavrilov, I. Maurer, K. Muratikov, S. Pisarevskaya, G. Sotnikova, “Fringe effects during recording transmission holographic gratings in photopolymers,” Opt. Spectrosc. 78, 280–282 (1995).

Porto, P. D.

S. Solimeno, B. Crosignani, P. D. Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986), Chap. 8.

Prewett, P.

T. Liao, S. Sheard, M. Li, J. Zhu, P. Prewett, “High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).
[CrossRef]

Rhee, U.

U. Rhee, H. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U. Rhee, H. Caulfield, J. Shamir, C. Vikram, M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Roncone, R. L.

Ruschin, S.

V. Weiss, I. Finkelstein, E. Millul, S. Ruschin, “Coupling and waveguiding in photopolymers,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communications, W. F. Frank, ed., Proc. SPIE3135, 136–143 (1997).
[CrossRef]

Schultz, S.

Schultz, S. M.

S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Design of a high-efficiency volume grating coupler for line focusing,” Appl. Opt. 37, 2278–2287 (1998).
[CrossRef]

S. M. Schultz, “High efficiency volume grating coupler,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, 1999).

Schwider, J.

N. Streibl, R. Volkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
[CrossRef]

Shamir, J.

U. Rhee, H. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U. Rhee, H. Caulfield, J. Shamir, C. Vikram, M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Sheard, S.

T. Liao, S. Sheard, M. Li, J. Zhu, P. Prewett, “High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).
[CrossRef]

M. Li, S. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profiles,” Opt. Eng. 35, 3101–3106 (1996).
[CrossRef]

Shinohara, M.

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photonics Technol. Lett. 6, 239–241 (1994).
[CrossRef]

Smirnov, V. V.

J. Y. Son, V. V. Smirnov, H. W. Jeon, I. I. Afanasyev, “Influence of Mylar film on the performance of hologram made with DuPont photopolymer film,” in Holographic and Diffractive Techniques, G. J. Drausmann, ed., Proc. SPIE2951, 74–79 (1996).
[CrossRef]

Solimeno, S.

S. Solimeno, B. Crosignani, P. D. Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986), Chap. 8.

Son, J. Y.

J. Y. Son, V. V. Smirnov, H. W. Jeon, I. I. Afanasyev, “Influence of Mylar film on the performance of hologram made with DuPont photopolymer film,” in Holographic and Diffractive Techniques, G. J. Drausmann, ed., Proc. SPIE2951, 74–79 (1996).
[CrossRef]

Song, S. H.

Sotnikova, G.

G. Gavrilov, I. Maurer, K. Muratikov, S. Pisarevskaya, G. Sotnikova, “Fringe effects during recording transmission holographic gratings in photopolymers,” Opt. Spectrosc. 78, 280–282 (1995).

Streibl, N.

N. Streibl, R. Volkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
[CrossRef]

Suhara, T.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photonics Technol. Lett. 6, 239–241 (1994).
[CrossRef]

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

T. Suhara, N. Nozaki, H. Nishihara, “An integrated acoustooptic printer head,” in Proceedings of the Fourth European Conference on Integrated Optics (Glasgow, Scotland, 11–13 May 1987), Vol. 87, pp. 119–122.

H. Sunagawa, T. Suhara, H. Nishihara, “Optical pickup apparatus for detecting and correcting focusing and tracking errors in detected recorded signals,” U.S. patent5,153,860 (6October1992).

Sunagawa, H.

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

H. Sunagawa, T. Suhara, H. Nishihara, “Optical pickup apparatus for detecting and correcting focusing and tracking errors in detected recorded signals,” U.S. patent5,153,860 (6October1992).

Svakhin, A. S.

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
[CrossRef] [PubMed]

I. A. Avrutskii, A. S. Svakhin, V. A. Sychugov, “An efficient grating coupler,” Zh. Tekh. Fiz. 59, 61–65 (1989).

Sychugov, V. A.

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
[CrossRef] [PubMed]

I. A. Avrutskii, A. S. Svakhin, V. A. Sychugov, “An efficient grating coupler,” Zh. Tekh. Fiz. 59, 61–65 (1989).

Taketomi, Y.

S. Nishiwaki, Y. Taketomi, S. Uchida, T. Tomita, J. Asada, “Optical head apparatus including a waveguide layer with concentric or spiral periodic structure,” U.S. patent5,200,939 (6April1993).

Taniguchi, T.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Tomita, T.

S. Nishiwaki, Y. Taketomi, S. Uchida, T. Tomita, J. Asada, “Optical head apparatus including a waveguide layer with concentric or spiral periodic structure,” U.S. patent5,200,939 (6April1993).

Uchida, S.

S. Nishiwaki, J. Asada, S. Uchida, “Optical head employing a concentric-circular focusing grating coupler,” Appl. Opt. 33, 1819–1827 (1994).
[CrossRef] [PubMed]

S. Nishiwaki, Y. Taketomi, S. Uchida, T. Tomita, J. Asada, “Optical head apparatus including a waveguide layer with concentric or spiral periodic structure,” U.S. patent5,200,939 (6April1993).

Uemukai, M.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Ura, S.

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photonics Technol. Lett. 6, 239–241 (1994).
[CrossRef]

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

Vikram, C.

U. Rhee, H. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U. Rhee, H. Caulfield, J. Shamir, C. Vikram, M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Volkel, R.

N. Streibl, R. Volkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
[CrossRef]

Weber, A.

W. Gambogi, W. Gerstadt, S. Mackara, A. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics: 4th in a Series, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).

Weisenbach, L.

Weiss, V.

V. Weiss, I. Finkelstein, E. Millul, S. Ruschin, “Coupling and waveguiding in photopolymers,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communications, W. F. Frank, ed., Proc. SPIE3135, 136–143 (1997).
[CrossRef]

Zelinski, B.

Zhao, C.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

C. Zhao, R. Chen, “Performance consideration of three-dimensional optoelectronic interconnection for intra-multichip-module clock signal distribution,” Appl. Opt. 36, 2537–2544 (1997).
[CrossRef] [PubMed]

Zhu, J.

T. Liao, S. Sheard, M. Li, J. Zhu, P. Prewett, “High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).
[CrossRef]

Appl. Opt. (9)

R. L. Roncone, L. Li, K. A. Bates, J. J. Burke, L. Weisenbach, B. Zelinski, “Design and fabrication of a single leakage channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993).
[CrossRef] [PubMed]

S. Nishiwaki, J. Asada, S. Uchida, “Optical head employing a concentric-circular focusing grating coupler,” Appl. Opt. 33, 1819–1827 (1994).
[CrossRef] [PubMed]

Q. Huang, P. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
[CrossRef] [PubMed]

C. Zhao, R. Chen, “Performance consideration of three-dimensional optoelectronic interconnection for intra-multichip-module clock signal distribution,” Appl. Opt. 36, 2537–2544 (1997).
[CrossRef] [PubMed]

S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Design of a high-efficiency volume grating coupler for line focusing,” Appl. Opt. 37, 2278–2287 (1998).
[CrossRef]

R. K. Kostuk, “Dynamic hologram recording characteristics in DuPont photopolymers,” Appl. Opt. 38, 1357–1363 (1999).
[CrossRef]

U. Rhee, H. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

S. H. Song, E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995).
[CrossRef] [PubMed]

J. C. Brazas, L. Li, A. L. Mckeon, “High-efficiency input coupling into optical waveguides using gratings with double-surface corrugation,” Appl. Opt. 34, 604–609 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Electron. Lett. (1)

M. Hagberg, T. Kjellberg, N. Eriksson, A. Larsson, “Demonstration of blazing effect in second order gratings under resonant condition,” Electron. Lett. 30, 410–412 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Eriksson, M. Hagberg, A. Larsson, “Highly directional grating outcouplers with tailorable radiation characteristics,” IEEE J. Quantum Electron. 32, 1038–1047 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (4)

S. Kristjansson, M. Li, N. Eriksson, K. Killius, A. Larsson, “Circular grating coupled DBR laser with integrated focusing outcoupler,” IEEE Photonics Technol. Lett. 9, 416–418 (1997).
[CrossRef]

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photonics Technol. Lett. 6, 239–241 (1994).
[CrossRef]

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” IEEE Photonics Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

N. Eriksson, M. Hagberg, A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7, 1394–1396 (1995).
[CrossRef]

J. Lightwave Technol. (3)

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

T. Liao, S. Sheard, M. Li, J. Zhu, P. Prewett, “High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).
[CrossRef]

Opt. Commun. (1)

N. Streibl, R. Volkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
[CrossRef]

Opt. Eng. (2)

U. Rhee, H. Caulfield, J. Shamir, C. Vikram, M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

M. Li, S. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profiles,” Opt. Eng. 35, 3101–3106 (1996).
[CrossRef]

Opt. Lett. (5)

Opt. Spectrosc. (1)

G. Gavrilov, I. Maurer, K. Muratikov, S. Pisarevskaya, G. Sotnikova, “Fringe effects during recording transmission holographic gratings in photopolymers,” Opt. Spectrosc. 78, 280–282 (1995).

Zh. Tekh. Fiz. (1)

I. A. Avrutskii, A. S. Svakhin, V. A. Sychugov, “An efficient grating coupler,” Zh. Tekh. Fiz. 59, 61–65 (1989).

Other (9)

J. Y. Son, V. V. Smirnov, H. W. Jeon, I. I. Afanasyev, “Influence of Mylar film on the performance of hologram made with DuPont photopolymer film,” in Holographic and Diffractive Techniques, G. J. Drausmann, ed., Proc. SPIE2951, 74–79 (1996).
[CrossRef]

V. Weiss, I. Finkelstein, E. Millul, S. Ruschin, “Coupling and waveguiding in photopolymers,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communications, W. F. Frank, ed., Proc. SPIE3135, 136–143 (1997).
[CrossRef]

W. Gambogi, W. Gerstadt, S. Mackara, A. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics: 4th in a Series, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).

T. Suhara, N. Nozaki, H. Nishihara, “An integrated acoustooptic printer head,” in Proceedings of the Fourth European Conference on Integrated Optics (Glasgow, Scotland, 11–13 May 1987), Vol. 87, pp. 119–122.

S. Nishiwaki, Y. Taketomi, S. Uchida, T. Tomita, J. Asada, “Optical head apparatus including a waveguide layer with concentric or spiral periodic structure,” U.S. patent5,200,939 (6April1993).

H. Sunagawa, T. Suhara, H. Nishihara, “Optical pickup apparatus for detecting and correcting focusing and tracking errors in detected recorded signals,” U.S. patent5,153,860 (6October1992).

S. M. Schultz, “High efficiency volume grating coupler,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, 1999).

Zemax Optical Design Program User’s Guide (Focus Software, Inc., P.O. Box 18228, Tucson, Ariz. 85731, 1999).

S. Solimeno, B. Crosignani, P. D. Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Volume grating coupler configuration with the grating recorded in the cover of the waveguide, where the grating vector K, grating period Λ, grating slant angle ϕ, waveguide thickness t w , grating thickness t g , coupler length L, focal lines location (x f , z f ), and outcoupling angle θ f are labeled.

Fig. 2
Fig. 2

Recording arrangement used to produce volume grating preferential-order focusing waveguide couplers. The propagation angles of the two recording beams θ1 and θ2 are labeled as well as the distance between the lens and the prism D.

Fig. 3
Fig. 3

(a) Grating vector K = K x + K z and (b) corresponding grating period Λ and grating slant angle ϕ of the volume grating preferential-order focusing coupler as a function of longitudinal position.

Fig. 4
Fig. 4

Arrangement used to measure the input coupling as a function of incident angle θ i .

Fig. 5
Fig. 5

Power transmitted through the nonfocusing volume grating coupler as a function of incident angle θ i .

Fig. 6
Fig. 6

Power transmitted through the focusing volume grating coupler as a function of incident angle θ i .

Fig. 7
Fig. 7

Power measured at the surface of the grating corresponding to the intensity profile of the beam diffracted into the cover and at the surface of the substrate corresponding to the beam diffracted through the substrate as well as theoretical fits to these profiles.

Fig. 8
Fig. 8

Measured intensity profiles (solid curve) and the corresponding theoretical calculations (dashed curves) at planes every 5 mm between z = 0 mm (surface) and z = 50 mm.

Fig. 9
Fig. 9

Measured focal intensity profile (dots) and the corresponding theoretical calculation (solid curve) at the focal plane z = 25 mm.

Tables (1)

Tables Icon

Table 1 Parameter Values of the Surface-Relief and Volume Grating Focusing Couplers

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Kxx=Nko+nckox-xfx-xf2+zf21/2,
Ix=Poηc,12α exp-2αx,
CE=ηc,11-exp-2αL.
Kzs=Kzo1-δz,
P1P2=sin θg2θ2sin θg1θ1,
Kx=k1-k2x.
k2x=ng,uvko,uvsin θ2xxˆ+cos θ2xzˆ,
Kxx=kx1-ng,uvko,uv sin θ2x.
kx1=kxo+Kx,
ηc,1=Pc,1Pc,1+Ps,1,
Ex=Ix exp-j 0xNko+Kxτdτ,

Metrics