Abstract

Techniques for noninvasively measuring the oxygen saturation of blood in retinal arteries and veins are reported in the literature, but none have been sufficiently accurate and reliable for clinical use. Addressing the need for increased accuracy, we present a series of oximetric equations that explicitly consider the effects of backscattering by red blood cells and lateral diffusion of light in the ocular fundus. The equations are derived for the specific geometry of a scanning-beam retinal vessel oximeter; however, the results should also be applicable to photographic oximeters. We present in vitro and in vivo data that suggest the validity of these equations.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Hickam, R. Frayser, J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375–385 (1963).
    [CrossRef] [PubMed]
  2. A. J. Cohen, R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng. 23, 391–400 (1976).
    [CrossRef] [PubMed]
  3. F. C. Delori, “Noninvasive technique for oximetry of blood in retinal vessels,” Appl. Opt. 27, 1113–1125 (1988).
    [CrossRef] [PubMed]
  4. D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” in Ophthalmic Technologies V, J.-M. Parel, Q. Ren, K. M. Joos, eds., Proc. SPIE2393, 210–218 (1995).
    [CrossRef]
  5. K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
    [CrossRef] [PubMed]
  6. M. H. Smith, K. R. Denninghoff, L. W. Hillman, R. A. Chipman, “Oxygen saturation measurements of blood in retinal vessels during blood loss,” J. Biomed. Opt. 3, 296–303 (1998).
    [CrossRef] [PubMed]
  7. J. S. Tiedeman, S. E. Kirk, S. Srinivas, J. M. Beach, “Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy,” Ophthalmology 105, 31–36 (1998).
    [CrossRef] [PubMed]
  8. M. H. Smith, “Optimum wavelength selection for retinal vessel oximetry,” Appl. Opt. 38, 258–267 (1999).
    [CrossRef]
  9. J. M. Beach, K. J. Schwenzer, S. Srinivas, J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
    [PubMed]
  10. O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives (Thomas, Springfield, Ill., 1970).
  11. V. Twersky, “Absorption and multiple scattering by biological suspensions,” J. Opt. Soc. Am. 60, 1084–1093 (1970).
    [CrossRef] [PubMed]
  12. R. N. Pittman, B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
    [PubMed]
  13. J. J. Drewes, M. H. Smith, K. R. Denninghoff, L. W. Hillman, “An instrument for the measurement of retinal vessel oxygen saturation,” in Optical Diagnostics of Biological Fluids IV, A. V. Priezzhev, M. V. Lomonosov, T. Asakura, eds., Proc. SPIE3591, 114–120 (1999).
  14. R. A. MacRae, J. A. McClure, P. Latimer, “Spectral transmission and scattering properties of red blood cells,” J. Opt. Soc. Am. 51, 1366–1372 (1961).
    [CrossRef] [PubMed]
  15. A. G. Borovoi, E. I. Naats, U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3, 364–372 (1998).
    [CrossRef] [PubMed]
  16. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410–7418 (1998).
    [CrossRef]
  17. F. C. Delori, E. S. Gragoudas, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
    [CrossRef]
  18. F. C. Delori, K. P. Pfilbsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  19. I. J. Hodgkinson, P. B. Greer, A. C. B. Molteno, “Point-spread function for light scattered in the human ocular fundus,” J. Opt. Soc. Am. A 11, 479–486 (1994).
    [CrossRef]
  20. M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, E. Thamm, K. H. Donnerhacke, “Monte Carlo simulation of retinal vessel profiles for the interpretation of in vivo oximetric measurements by imaging fundus reflectometry,” in Medical Applications of Lasers in Dermatology, Ophthalmology, Denistry, and Endoscopy, G. B. Altshuler, R. Birngruber, M. Dal Forte, R. Hibst, H. Hoenigsmann, N. Krasner, F. Laffitte, eds., Proc. SPIE3192, 211–218 (1997).
  21. S. Prahl has compiled data of hemoglobin extinction coefficients from several investigators. The data are available at http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  22. N. M. Anderson, P. Sekelj, “Light-absorbing and scattering properties of nonhemolysed blood,” Phys. Med. Biol. 12, 173–184 (1967).
    [CrossRef] [PubMed]
  23. N. M. Anderson, P. Sekelj, “Reflection and transmission of light by thin films of nonhaemolysed blood,” Phys. Med. Biol. 12, 185–192 (1967).
    [CrossRef] [PubMed]
  24. J. M. Steinke, A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A 5, 813–822 (1988).
    [CrossRef] [PubMed]
  25. V. Twersky, “Absorption and multiple scattering by biological suspensions,” J. Opt. Soc. Am. 60, 1084–1093 (1970).
    [CrossRef] [PubMed]
  26. A. N. Yaroslavsky, I. V. Yaroslavski, T. Goldbach, H.-J. Schwarmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
    [CrossRef] [PubMed]
  27. J. J. Drewes, “Four wavelength retinal vessel oximetry,” Ph.D. dissertation (University of Alabama, Huntsville, Ala., 1999).
  28. A. Lompdo, “A confocal scanning laser ophthalmoscope for retinal vessel oximetry,” Ph.D. dissertation (University of Alabama, Huntsville, Ala., 1999).
  29. R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
    [CrossRef] [PubMed]
  30. K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
    [CrossRef] [PubMed]

1999 (3)

M. H. Smith, “Optimum wavelength selection for retinal vessel oximetry,” Appl. Opt. 38, 258–267 (1999).
[CrossRef]

J. M. Beach, K. J. Schwenzer, S. Srinivas, J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

A. N. Yaroslavsky, I. V. Yaroslavski, T. Goldbach, H.-J. Schwarmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

1998 (5)

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

M. H. Smith, K. R. Denninghoff, L. W. Hillman, R. A. Chipman, “Oxygen saturation measurements of blood in retinal vessels during blood loss,” J. Biomed. Opt. 3, 296–303 (1998).
[CrossRef] [PubMed]

J. S. Tiedeman, S. E. Kirk, S. Srinivas, J. M. Beach, “Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy,” Ophthalmology 105, 31–36 (1998).
[CrossRef] [PubMed]

A. G. Borovoi, E. I. Naats, U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3, 364–372 (1998).
[CrossRef] [PubMed]

M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410–7418 (1998).
[CrossRef]

1997 (1)

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

1994 (1)

1989 (1)

1988 (2)

1987 (1)

1977 (1)

F. C. Delori, E. S. Gragoudas, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

1976 (1)

A. J. Cohen, R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng. 23, 391–400 (1976).
[CrossRef] [PubMed]

1975 (1)

R. N. Pittman, B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
[PubMed]

1970 (2)

1967 (2)

N. M. Anderson, P. Sekelj, “Light-absorbing and scattering properties of nonhemolysed blood,” Phys. Med. Biol. 12, 173–184 (1967).
[CrossRef] [PubMed]

N. M. Anderson, P. Sekelj, “Reflection and transmission of light by thin films of nonhaemolysed blood,” Phys. Med. Biol. 12, 185–192 (1967).
[CrossRef] [PubMed]

1963 (1)

J. B. Hickam, R. Frayser, J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375–385 (1963).
[CrossRef] [PubMed]

1961 (1)

Anderson, N. M.

N. M. Anderson, P. Sekelj, “Light-absorbing and scattering properties of nonhemolysed blood,” Phys. Med. Biol. 12, 173–184 (1967).
[CrossRef] [PubMed]

N. M. Anderson, P. Sekelj, “Reflection and transmission of light by thin films of nonhaemolysed blood,” Phys. Med. Biol. 12, 185–192 (1967).
[CrossRef] [PubMed]

Bartsch, U.

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” in Ophthalmic Technologies V, J.-M. Parel, Q. Ren, K. M. Joos, eds., Proc. SPIE2393, 210–218 (1995).
[CrossRef]

Beach, J. M.

J. M. Beach, K. J. Schwenzer, S. Srinivas, J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

J. S. Tiedeman, S. E. Kirk, S. Srinivas, J. M. Beach, “Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy,” Ophthalmology 105, 31–36 (1998).
[CrossRef] [PubMed]

Borovoi, A. G.

A. G. Borovoi, E. I. Naats, U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3, 364–372 (1998).
[CrossRef] [PubMed]

Chipman, R. A.

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

M. H. Smith, K. R. Denninghoff, L. W. Hillman, R. A. Chipman, “Oxygen saturation measurements of blood in retinal vessels during blood loss,” J. Biomed. Opt. 3, 296–303 (1998).
[CrossRef] [PubMed]

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

Cohen, A. J.

A. J. Cohen, R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng. 23, 391–400 (1976).
[CrossRef] [PubMed]

Delori, F. C.

Denninghoff, K. R.

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

M. H. Smith, K. R. Denninghoff, L. W. Hillman, R. A. Chipman, “Oxygen saturation measurements of blood in retinal vessels during blood loss,” J. Biomed. Opt. 3, 296–303 (1998).
[CrossRef] [PubMed]

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

J. J. Drewes, M. H. Smith, K. R. Denninghoff, L. W. Hillman, “An instrument for the measurement of retinal vessel oxygen saturation,” in Optical Diagnostics of Biological Fluids IV, A. V. Priezzhev, M. V. Lomonosov, T. Asakura, eds., Proc. SPIE3591, 114–120 (1999).

Donnerhacke, K. H.

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, E. Thamm, K. H. Donnerhacke, “Monte Carlo simulation of retinal vessel profiles for the interpretation of in vivo oximetric measurements by imaging fundus reflectometry,” in Medical Applications of Lasers in Dermatology, Ophthalmology, Denistry, and Endoscopy, G. B. Altshuler, R. Birngruber, M. Dal Forte, R. Hibst, H. Hoenigsmann, N. Krasner, F. Laffitte, eds., Proc. SPIE3192, 211–218 (1997).

Drewes, J. J.

J. J. Drewes, M. H. Smith, K. R. Denninghoff, L. W. Hillman, “An instrument for the measurement of retinal vessel oxygen saturation,” in Optical Diagnostics of Biological Fluids IV, A. V. Priezzhev, M. V. Lomonosov, T. Asakura, eds., Proc. SPIE3591, 114–120 (1999).

J. J. Drewes, “Four wavelength retinal vessel oximetry,” Ph.D. dissertation (University of Alabama, Huntsville, Ala., 1999).

Duling, B. R.

R. N. Pittman, B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
[PubMed]

Frayser, R.

J. B. Hickam, R. Frayser, J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375–385 (1963).
[CrossRef] [PubMed]

Goldbach, T.

A. N. Yaroslavsky, I. V. Yaroslavski, T. Goldbach, H.-J. Schwarmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

Gragoudas, E. S.

F. C. Delori, E. S. Gragoudas, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

Greer, P. B.

Hammer, M.

M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410–7418 (1998).
[CrossRef]

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, E. Thamm, K. H. Donnerhacke, “Monte Carlo simulation of retinal vessel profiles for the interpretation of in vivo oximetric measurements by imaging fundus reflectometry,” in Medical Applications of Lasers in Dermatology, Ophthalmology, Denistry, and Endoscopy, G. B. Altshuler, R. Birngruber, M. Dal Forte, R. Hibst, H. Hoenigsmann, N. Krasner, F. Laffitte, eds., Proc. SPIE3192, 211–218 (1997).

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” in Ophthalmic Technologies V, J.-M. Parel, Q. Ren, K. M. Joos, eds., Proc. SPIE2393, 210–218 (1995).
[CrossRef]

Hickam, J. B.

J. B. Hickam, R. Frayser, J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375–385 (1963).
[CrossRef] [PubMed]

Hillman, L. W.

M. H. Smith, K. R. Denninghoff, L. W. Hillman, R. A. Chipman, “Oxygen saturation measurements of blood in retinal vessels during blood loss,” J. Biomed. Opt. 3, 296–303 (1998).
[CrossRef] [PubMed]

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

J. J. Drewes, M. H. Smith, K. R. Denninghoff, L. W. Hillman, “An instrument for the measurement of retinal vessel oxygen saturation,” in Optical Diagnostics of Biological Fluids IV, A. V. Priezzhev, M. V. Lomonosov, T. Asakura, eds., Proc. SPIE3591, 114–120 (1999).

Hodgkinson, I. J.

Hughes, C. E.

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

Hughes, G. W.

Jester, P. M.

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

Kirk, S. E.

J. S. Tiedeman, S. E. Kirk, S. Srinivas, J. M. Beach, “Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy,” Ophthalmology 105, 31–36 (1998).
[CrossRef] [PubMed]

Kolb, A.

Kuhn, F.

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

Laing, R. A.

A. J. Cohen, R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng. 23, 391–400 (1976).
[CrossRef] [PubMed]

Latimer, P.

Leistritz, L.

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” in Ophthalmic Technologies V, J.-M. Parel, Q. Ren, K. M. Joos, eds., Proc. SPIE2393, 210–218 (1995).
[CrossRef]

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, E. Thamm, K. H. Donnerhacke, “Monte Carlo simulation of retinal vessel profiles for the interpretation of in vivo oximetric measurements by imaging fundus reflectometry,” in Medical Applications of Lasers in Dermatology, Ophthalmology, Denistry, and Endoscopy, G. B. Altshuler, R. Birngruber, M. Dal Forte, R. Hibst, H. Hoenigsmann, N. Krasner, F. Laffitte, eds., Proc. SPIE3192, 211–218 (1997).

Leistritz, S.

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, E. Thamm, K. H. Donnerhacke, “Monte Carlo simulation of retinal vessel profiles for the interpretation of in vivo oximetric measurements by imaging fundus reflectometry,” in Medical Applications of Lasers in Dermatology, Ophthalmology, Denistry, and Endoscopy, G. B. Altshuler, R. Birngruber, M. Dal Forte, R. Hibst, H. Hoenigsmann, N. Krasner, F. Laffitte, eds., Proc. SPIE3192, 211–218 (1997).

Lompdo, A.

A. Lompdo, “A confocal scanning laser ophthalmoscope for retinal vessel oximetry,” Ph.D. dissertation (University of Alabama, Huntsville, Ala., 1999).

MacRae, R. A.

McClure, J. A.

Michel, B.

Molteno, A. C. B.

Naats, E. I.

A. G. Borovoi, E. I. Naats, U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3, 364–372 (1998).
[CrossRef] [PubMed]

Oppel, U. G.

A. G. Borovoi, E. I. Naats, U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3, 364–372 (1998).
[CrossRef] [PubMed]

Pfilbsen, K. P.

Pittman, R. N.

R. N. Pittman, B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
[PubMed]

Pruett, R. C.

F. C. Delori, E. S. Gragoudas, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

Redden, D.

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

Ross, J. C.

J. B. Hickam, R. Frayser, J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375–385 (1963).
[CrossRef] [PubMed]

Rue, L. W.

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

Schwarmaier, H.-J.

A. N. Yaroslavsky, I. V. Yaroslavski, T. Goldbach, H.-J. Schwarmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

Schweitzer, D.

M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410–7418 (1998).
[CrossRef]

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, E. Thamm, K. H. Donnerhacke, “Monte Carlo simulation of retinal vessel profiles for the interpretation of in vivo oximetric measurements by imaging fundus reflectometry,” in Medical Applications of Lasers in Dermatology, Ophthalmology, Denistry, and Endoscopy, G. B. Altshuler, R. Birngruber, M. Dal Forte, R. Hibst, H. Hoenigsmann, N. Krasner, F. Laffitte, eds., Proc. SPIE3192, 211–218 (1997).

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” in Ophthalmic Technologies V, J.-M. Parel, Q. Ren, K. M. Joos, eds., Proc. SPIE2393, 210–218 (1995).
[CrossRef]

Schwenzer, K. J.

J. M. Beach, K. J. Schwenzer, S. Srinivas, J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

Scibor, M.

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” in Ophthalmic Technologies V, J.-M. Parel, Q. Ren, K. M. Joos, eds., Proc. SPIE2393, 210–218 (1995).
[CrossRef]

Sekelj, P.

N. M. Anderson, P. Sekelj, “Light-absorbing and scattering properties of nonhemolysed blood,” Phys. Med. Biol. 12, 173–184 (1967).
[CrossRef] [PubMed]

N. M. Anderson, P. Sekelj, “Reflection and transmission of light by thin films of nonhaemolysed blood,” Phys. Med. Biol. 12, 185–192 (1967).
[CrossRef] [PubMed]

Shepherd, A. P.

Smith, M. H.

M. H. Smith, “Optimum wavelength selection for retinal vessel oximetry,” Appl. Opt. 38, 258–267 (1999).
[CrossRef]

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

M. H. Smith, K. R. Denninghoff, L. W. Hillman, R. A. Chipman, “Oxygen saturation measurements of blood in retinal vessels during blood loss,” J. Biomed. Opt. 3, 296–303 (1998).
[CrossRef] [PubMed]

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

J. J. Drewes, M. H. Smith, K. R. Denninghoff, L. W. Hillman, “An instrument for the measurement of retinal vessel oxygen saturation,” in Optical Diagnostics of Biological Fluids IV, A. V. Priezzhev, M. V. Lomonosov, T. Asakura, eds., Proc. SPIE3591, 114–120 (1999).

Srinivas, S.

J. M. Beach, K. J. Schwenzer, S. Srinivas, J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

J. S. Tiedeman, S. E. Kirk, S. Srinivas, J. M. Beach, “Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy,” Ophthalmology 105, 31–36 (1998).
[CrossRef] [PubMed]

Steinke, J. M.

Strobel, J.

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” in Ophthalmic Technologies V, J.-M. Parel, Q. Ren, K. M. Joos, eds., Proc. SPIE2393, 210–218 (1995).
[CrossRef]

Thamm, E.

M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410–7418 (1998).
[CrossRef]

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, E. Thamm, K. H. Donnerhacke, “Monte Carlo simulation of retinal vessel profiles for the interpretation of in vivo oximetric measurements by imaging fundus reflectometry,” in Medical Applications of Lasers in Dermatology, Ophthalmology, Denistry, and Endoscopy, G. B. Altshuler, R. Birngruber, M. Dal Forte, R. Hibst, H. Hoenigsmann, N. Krasner, F. Laffitte, eds., Proc. SPIE3192, 211–218 (1997).

Tiedeman, J. S.

J. M. Beach, K. J. Schwenzer, S. Srinivas, J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

J. S. Tiedeman, S. E. Kirk, S. Srinivas, J. M. Beach, “Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy,” Ophthalmology 105, 31–36 (1998).
[CrossRef] [PubMed]

Twersky, V.

Van Assendelft, O. W.

O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives (Thomas, Springfield, Ill., 1970).

Webb, R. H.

Yaroslavski, I. V.

A. N. Yaroslavsky, I. V. Yaroslavski, T. Goldbach, H.-J. Schwarmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

Yaroslavsky, A. N.

A. N. Yaroslavsky, I. V. Yaroslavski, T. Goldbach, H.-J. Schwarmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

Acad. Emerg. Med. (1)

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, F. Kuhn, D. Redden, L. W. Rue, “Retinal venous oxygen saturation correlates with blood volume,” Acad. Emerg. Med. 5, 577–582 (1998).
[CrossRef] [PubMed]

Appl. Opt. (5)

Arch. Ophthalmol. (Chicago) (1)

F. C. Delori, E. S. Gragoudas, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography: the normal fundus,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

Circulation (1)

J. B. Hickam, R. Frayser, J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375–385 (1963).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

A. J. Cohen, R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng. 23, 391–400 (1976).
[CrossRef] [PubMed]

J. Appl. Physiol. (2)

J. M. Beach, K. J. Schwenzer, S. Srinivas, J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

R. N. Pittman, B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
[PubMed]

J. Biomed. Opt. (3)

A. G. Borovoi, E. I. Naats, U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3, 364–372 (1998).
[CrossRef] [PubMed]

M. H. Smith, K. R. Denninghoff, L. W. Hillman, R. A. Chipman, “Oxygen saturation measurements of blood in retinal vessels during blood loss,” J. Biomed. Opt. 3, 296–303 (1998).
[CrossRef] [PubMed]

A. N. Yaroslavsky, I. V. Yaroslavski, T. Goldbach, H.-J. Schwarmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

J. Trauma (1)

K. R. Denninghoff, M. H. Smith, R. A. Chipman, L. W. Hillman, P. M. Jester, C. E. Hughes, F. Kuhn, L. W. Rue, “Retinal large vessel oxygen saturation correlates with early blood loss and hypoxia in anesthetized swine,” J. Trauma 43, 29–34 (1997).
[CrossRef] [PubMed]

Ophthalmology (1)

J. S. Tiedeman, S. E. Kirk, S. Srinivas, J. M. Beach, “Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy,” Ophthalmology 105, 31–36 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

N. M. Anderson, P. Sekelj, “Light-absorbing and scattering properties of nonhemolysed blood,” Phys. Med. Biol. 12, 173–184 (1967).
[CrossRef] [PubMed]

N. M. Anderson, P. Sekelj, “Reflection and transmission of light by thin films of nonhaemolysed blood,” Phys. Med. Biol. 12, 185–192 (1967).
[CrossRef] [PubMed]

Other (7)

M. Hammer, S. Leistritz, L. Leistritz, D. Schweitzer, E. Thamm, K. H. Donnerhacke, “Monte Carlo simulation of retinal vessel profiles for the interpretation of in vivo oximetric measurements by imaging fundus reflectometry,” in Medical Applications of Lasers in Dermatology, Ophthalmology, Denistry, and Endoscopy, G. B. Altshuler, R. Birngruber, M. Dal Forte, R. Hibst, H. Hoenigsmann, N. Krasner, F. Laffitte, eds., Proc. SPIE3192, 211–218 (1997).

S. Prahl has compiled data of hemoglobin extinction coefficients from several investigators. The data are available at http://omlc.ogi.edu/spectra/hemoglobin/index.html .

J. J. Drewes, “Four wavelength retinal vessel oximetry,” Ph.D. dissertation (University of Alabama, Huntsville, Ala., 1999).

A. Lompdo, “A confocal scanning laser ophthalmoscope for retinal vessel oximetry,” Ph.D. dissertation (University of Alabama, Huntsville, Ala., 1999).

O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives (Thomas, Springfield, Ill., 1970).

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” in Ophthalmic Technologies V, J.-M. Parel, Q. Ren, K. M. Joos, eds., Proc. SPIE2393, 210–218 (1995).
[CrossRef]

J. J. Drewes, M. H. Smith, K. R. Denninghoff, L. W. Hillman, “An instrument for the measurement of retinal vessel oxygen saturation,” in Optical Diagnostics of Biological Fluids IV, A. V. Priezzhev, M. V. Lomonosov, T. Asakura, eds., Proc. SPIE3591, 114–120 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Primary light paths associated with a scanning-beam retinal vessel oximetry measurement; Φ0, incident light; Φmedia, scattered light from the lens and vitreous; Φglint, specular reflection from the inner limiting membrane (ILM) or vessel wall; Φ s , light scattered away by red blood cells (RBC’s) within the vessel; Φbs, light backscattered to the detector by RBC’s; Φsp, light collected that has traversed the vessel in single pass; Φdp, light collected that has traversed the vessel in double pass; Φdiff, light diffused laterally in the choroid; RPE, retinal pigment epithelium.

Fig. 2
Fig. 2

Laser light traverses a retinal blood vessel and diffuses laterally in the reflecting layers of the ocular fundus. The diameter of the diffusion-enlarged PSF varies with wavelength, and two typical PSF diameters are illustrated. Only light that scatters into the indicated solid angle exits back out of the eye. The larger PSF demonstrates both single-pass and double-pass transmission through the vessel, whereas the smaller PSF demonstrates primarily single-pass transmittance.

Fig. 3
Fig. 3

Typical vessel absorption profile. The vessel transmittance T v is calculated as Φ v f where Φ v is the collected flux from the center of the vessel and Φ f is an estimate of the flux that would be collected from the ocular fundus in the absence of the retinal vessel (estimated here by a linear approximation).

Fig. 4
Fig. 4

Values of εcd for a typical retinal vessel, where vessel diameter d = 150 µm and the hemoglobin concentration c = 15 g/dl. Absorption coefficient data are from Ref. 21.

Fig. 5
Fig. 5

Application of the model eye calibration equation to the in vivo swine data. The top graph compares the calculated retinal arteria saturation with the measured femoral artery oxygen saturation. The bottom graph displays the resulting best-fit spectra. The filled circles are measured vessel transmittances for a femoral artery saturation of 36% O2 saturation, and the open circles are for 95% O2 saturation.

Fig. 6
Fig. 6

Application of the wavelength-dependent scattering equation, Eq. (21), to the in vivo swine data. The best-fit scattering factors f(λ) were found to be f(629) = 0.990, f(670) = 1.010, f(821) = 0.965, and f(899) = 1.000.

Fig. 7
Fig. 7

Application of the wavelength-dependent path-length equation, Eq. (22), to the in vivo swine data. The best-fit path-length factors χ(λ) were found to be χ(629) = 0.65, χ(670) = 0.7, χ(821) = 0.85, and χ(899) = 1.00.

Fig. 8
Fig. 8

Calibration of the confocal scanning laser oximeter in a model eye. The top graph compares the calculated oxygen saturation with the actual saturation of the known whole-blood samples. The bottom graph displays the resulting best-fit spectra. The filled circles are measured vessel transmittances for an oxygen saturation of 11% O2 saturation, and the open circles are for 100% O2 saturation.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Tvλ=Tsλexp-ελχcd,
ελ=sεHbO2λ+1-sεHbλ.
Tv=ΦvΦf,
Φf=RfΦ0,
Φv=Φsp+Φdp+Φbs,
Φv=αRfΦ0 exp-εcd+βRfΦ0 exp-2εcd+Φbs.
R=a1+a2 exp-εcd.
Φv=αRfΦ0 exp-εcd+βRfΦ0 exp-2εcd+a1Φ0+a2Φ0 exp-εcd.
Tv=α+a2Rfexp-sεHbO2+1-sεHbcd+β exp-2sεHbO2+1-sεHbcd+a1Rf.
Tv=α exp-εcd+β exp-2εcd.
Dv=-lnα exp-εcd+β exp-2εcd.
Dv=-lnα+β+α+2βα+β εcd-αβ2α+β2εcd2+Oεcd3.
Dv=-lnα+β+α+2βα+β εcd.
Tv=α+βexp-εα+2βα+βcd.
Tv=α+a2Rfexp-εcd+a1Rf.
Tv=α+a1+a2Rfexp-a2+αRfa1+a2+αRf εcd
Tsλ=α+a1+a2Rf,
χλ=a2+αRfa1+a2+αRf.
Tvλ=Tsλexp-χλcdελ.
Tvλ=Tsλexp-ελcd+gλ.
Tvλ=Tsfλexp-χcdsεHbλ+1-sεHbO2λ
Tvλ=Ts exp-χλcdsεHbO2λ+1-sεHbλ

Metrics