Abstract

A fiber bundle has been designed for measurement of gas concentrations in a chemical vapor deposition (CVD) chamber. The bundle is broadband, covering the spectrum range from 500 to 6000 cm-1. Using this bundle, we have designed Fourier Transform infrared (FTIR) sampling configurations with reduced beam divergence (from 0.4 to 0.1 rad) and focal spot diameters (from 12 to 4 mm). The FTIR spectrum of tetraethoxysilane vapors in a CVD chamber was determined with the bundle and modified SAM connectors. An ellipsoid reflector was designed that yielded improved signal-to-noise ratios (SNR’s) in the fiber-based spectra by a factor of 2. The incorporation of this reflector in spectrometers by use of the fiber bundle has the potential to reduce the sampling times for spectra while retaining acceptable SNR’s.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Semiconductor Industry Association, The 1997 National Technology Roadmap for Semiconductors (SEMATECH, Austin, Tex., 1997) (URL: http://notes.sematech.org/ntrs/pubintrs.nsf ).
  2. J. D. Jones, P. D. Jero, “In situ control of chemical vapor deposition for fiber coating,” Eng. Appl. Artif. Intell. 11(Issue 5), 619–626 (1998).
  3. K. I. Hanaoka, H. Ohnishi, K. Tachibana, “In situ measurements of gas-phase reactions on metalorganic chemical vapor deposition of copper films by Fourier transform infrared spectroscopy,” Jpn. J. Appl. Phys. 32, 4774–4778 (1993).
    [CrossRef]
  4. K. I. Hanaoka, K. Tachibana, H. Ohnishi, “In situ measurements of gas-phase reactions during the chemical vapor deposition of copper using Fourier-transform infrared spectroscopy,” Thin Solid Films 262, 209–217 (1995).
    [CrossRef]
  5. J. A. O’Neill, M. L. Passow, T. J. Cotler, “Infrared absorption spectroscopy of monitoring condensable gases in chemical vapor deposition applications,” J. Vac. Sci. Technol. A12, 839–845 (1994).
    [CrossRef]
  6. S. Salim, K. F. Jensen, R. D. Driver, “Monitoring of gas-phase species in metalorganic vapor epitaxy by fiber-optics-based Fourier transform infrared spectroscopy,” J. Cryst. Growth 145, 28–35 (1994).
    [CrossRef]
  7. T. Whidden, X. Bao, J. Taylor, M. Couturier, P. Lu, Z. Xiaozhong, S. Romet, “In situ studies of TEOS/ozone CVD: experimental considerations for probing reaction boundary layers in commercial CVD equipment,” in Proceedings of the 194th Meeting of the Electrochemical Society, PV 98–23 (The Electrochemical Society, Pennington, N.J., 1998), pp. 153–160.
  8. M. Saito, K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 524–538 (1997).
    [CrossRef]
  9. P. Hansch, J. R. Norby, S. H. Evans, L. D. Vanwoerkom, “An ellipsoidal mirror time-of-flight photoelectron energy analyzer,” Rev. Sci. Instrum. 66, 5512–5515 (1995).
    [CrossRef]
  10. X. Bao, P. Lu, T. Whidden, “A novel way of improving the collection efficiency and image quality of glowbar to mid-IR fibers,” in Infrared Glass Optical Fibers and Their Applications, M. Saad, ed., Proc. SPIE3416, 213–219 (1998).
    [CrossRef]

1998 (1)

J. D. Jones, P. D. Jero, “In situ control of chemical vapor deposition for fiber coating,” Eng. Appl. Artif. Intell. 11(Issue 5), 619–626 (1998).

1997 (1)

M. Saito, K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 524–538 (1997).
[CrossRef]

1995 (2)

P. Hansch, J. R. Norby, S. H. Evans, L. D. Vanwoerkom, “An ellipsoidal mirror time-of-flight photoelectron energy analyzer,” Rev. Sci. Instrum. 66, 5512–5515 (1995).
[CrossRef]

K. I. Hanaoka, K. Tachibana, H. Ohnishi, “In situ measurements of gas-phase reactions during the chemical vapor deposition of copper using Fourier-transform infrared spectroscopy,” Thin Solid Films 262, 209–217 (1995).
[CrossRef]

1994 (2)

J. A. O’Neill, M. L. Passow, T. J. Cotler, “Infrared absorption spectroscopy of monitoring condensable gases in chemical vapor deposition applications,” J. Vac. Sci. Technol. A12, 839–845 (1994).
[CrossRef]

S. Salim, K. F. Jensen, R. D. Driver, “Monitoring of gas-phase species in metalorganic vapor epitaxy by fiber-optics-based Fourier transform infrared spectroscopy,” J. Cryst. Growth 145, 28–35 (1994).
[CrossRef]

1993 (1)

K. I. Hanaoka, H. Ohnishi, K. Tachibana, “In situ measurements of gas-phase reactions on metalorganic chemical vapor deposition of copper films by Fourier transform infrared spectroscopy,” Jpn. J. Appl. Phys. 32, 4774–4778 (1993).
[CrossRef]

Bao, X.

X. Bao, P. Lu, T. Whidden, “A novel way of improving the collection efficiency and image quality of glowbar to mid-IR fibers,” in Infrared Glass Optical Fibers and Their Applications, M. Saad, ed., Proc. SPIE3416, 213–219 (1998).
[CrossRef]

T. Whidden, X. Bao, J. Taylor, M. Couturier, P. Lu, Z. Xiaozhong, S. Romet, “In situ studies of TEOS/ozone CVD: experimental considerations for probing reaction boundary layers in commercial CVD equipment,” in Proceedings of the 194th Meeting of the Electrochemical Society, PV 98–23 (The Electrochemical Society, Pennington, N.J., 1998), pp. 153–160.

Cotler, T. J.

J. A. O’Neill, M. L. Passow, T. J. Cotler, “Infrared absorption spectroscopy of monitoring condensable gases in chemical vapor deposition applications,” J. Vac. Sci. Technol. A12, 839–845 (1994).
[CrossRef]

Couturier, M.

T. Whidden, X. Bao, J. Taylor, M. Couturier, P. Lu, Z. Xiaozhong, S. Romet, “In situ studies of TEOS/ozone CVD: experimental considerations for probing reaction boundary layers in commercial CVD equipment,” in Proceedings of the 194th Meeting of the Electrochemical Society, PV 98–23 (The Electrochemical Society, Pennington, N.J., 1998), pp. 153–160.

Driver, R. D.

S. Salim, K. F. Jensen, R. D. Driver, “Monitoring of gas-phase species in metalorganic vapor epitaxy by fiber-optics-based Fourier transform infrared spectroscopy,” J. Cryst. Growth 145, 28–35 (1994).
[CrossRef]

Evans, S. H.

P. Hansch, J. R. Norby, S. H. Evans, L. D. Vanwoerkom, “An ellipsoidal mirror time-of-flight photoelectron energy analyzer,” Rev. Sci. Instrum. 66, 5512–5515 (1995).
[CrossRef]

Hanaoka, K. I.

K. I. Hanaoka, K. Tachibana, H. Ohnishi, “In situ measurements of gas-phase reactions during the chemical vapor deposition of copper using Fourier-transform infrared spectroscopy,” Thin Solid Films 262, 209–217 (1995).
[CrossRef]

K. I. Hanaoka, H. Ohnishi, K. Tachibana, “In situ measurements of gas-phase reactions on metalorganic chemical vapor deposition of copper films by Fourier transform infrared spectroscopy,” Jpn. J. Appl. Phys. 32, 4774–4778 (1993).
[CrossRef]

Hansch, P.

P. Hansch, J. R. Norby, S. H. Evans, L. D. Vanwoerkom, “An ellipsoidal mirror time-of-flight photoelectron energy analyzer,” Rev. Sci. Instrum. 66, 5512–5515 (1995).
[CrossRef]

Jensen, K. F.

S. Salim, K. F. Jensen, R. D. Driver, “Monitoring of gas-phase species in metalorganic vapor epitaxy by fiber-optics-based Fourier transform infrared spectroscopy,” J. Cryst. Growth 145, 28–35 (1994).
[CrossRef]

Jero, P. D.

J. D. Jones, P. D. Jero, “In situ control of chemical vapor deposition for fiber coating,” Eng. Appl. Artif. Intell. 11(Issue 5), 619–626 (1998).

Jones, J. D.

J. D. Jones, P. D. Jero, “In situ control of chemical vapor deposition for fiber coating,” Eng. Appl. Artif. Intell. 11(Issue 5), 619–626 (1998).

Kikuchi, K.

M. Saito, K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 524–538 (1997).
[CrossRef]

Lu, P.

T. Whidden, X. Bao, J. Taylor, M. Couturier, P. Lu, Z. Xiaozhong, S. Romet, “In situ studies of TEOS/ozone CVD: experimental considerations for probing reaction boundary layers in commercial CVD equipment,” in Proceedings of the 194th Meeting of the Electrochemical Society, PV 98–23 (The Electrochemical Society, Pennington, N.J., 1998), pp. 153–160.

X. Bao, P. Lu, T. Whidden, “A novel way of improving the collection efficiency and image quality of glowbar to mid-IR fibers,” in Infrared Glass Optical Fibers and Their Applications, M. Saad, ed., Proc. SPIE3416, 213–219 (1998).
[CrossRef]

Norby, J. R.

P. Hansch, J. R. Norby, S. H. Evans, L. D. Vanwoerkom, “An ellipsoidal mirror time-of-flight photoelectron energy analyzer,” Rev. Sci. Instrum. 66, 5512–5515 (1995).
[CrossRef]

O’Neill, J. A.

J. A. O’Neill, M. L. Passow, T. J. Cotler, “Infrared absorption spectroscopy of monitoring condensable gases in chemical vapor deposition applications,” J. Vac. Sci. Technol. A12, 839–845 (1994).
[CrossRef]

Ohnishi, H.

K. I. Hanaoka, K. Tachibana, H. Ohnishi, “In situ measurements of gas-phase reactions during the chemical vapor deposition of copper using Fourier-transform infrared spectroscopy,” Thin Solid Films 262, 209–217 (1995).
[CrossRef]

K. I. Hanaoka, H. Ohnishi, K. Tachibana, “In situ measurements of gas-phase reactions on metalorganic chemical vapor deposition of copper films by Fourier transform infrared spectroscopy,” Jpn. J. Appl. Phys. 32, 4774–4778 (1993).
[CrossRef]

Passow, M. L.

J. A. O’Neill, M. L. Passow, T. J. Cotler, “Infrared absorption spectroscopy of monitoring condensable gases in chemical vapor deposition applications,” J. Vac. Sci. Technol. A12, 839–845 (1994).
[CrossRef]

Romet, S.

T. Whidden, X. Bao, J. Taylor, M. Couturier, P. Lu, Z. Xiaozhong, S. Romet, “In situ studies of TEOS/ozone CVD: experimental considerations for probing reaction boundary layers in commercial CVD equipment,” in Proceedings of the 194th Meeting of the Electrochemical Society, PV 98–23 (The Electrochemical Society, Pennington, N.J., 1998), pp. 153–160.

Saito, M.

M. Saito, K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 524–538 (1997).
[CrossRef]

Salim, S.

S. Salim, K. F. Jensen, R. D. Driver, “Monitoring of gas-phase species in metalorganic vapor epitaxy by fiber-optics-based Fourier transform infrared spectroscopy,” J. Cryst. Growth 145, 28–35 (1994).
[CrossRef]

Tachibana, K.

K. I. Hanaoka, K. Tachibana, H. Ohnishi, “In situ measurements of gas-phase reactions during the chemical vapor deposition of copper using Fourier-transform infrared spectroscopy,” Thin Solid Films 262, 209–217 (1995).
[CrossRef]

K. I. Hanaoka, H. Ohnishi, K. Tachibana, “In situ measurements of gas-phase reactions on metalorganic chemical vapor deposition of copper films by Fourier transform infrared spectroscopy,” Jpn. J. Appl. Phys. 32, 4774–4778 (1993).
[CrossRef]

Taylor, J.

T. Whidden, X. Bao, J. Taylor, M. Couturier, P. Lu, Z. Xiaozhong, S. Romet, “In situ studies of TEOS/ozone CVD: experimental considerations for probing reaction boundary layers in commercial CVD equipment,” in Proceedings of the 194th Meeting of the Electrochemical Society, PV 98–23 (The Electrochemical Society, Pennington, N.J., 1998), pp. 153–160.

Vanwoerkom, L. D.

P. Hansch, J. R. Norby, S. H. Evans, L. D. Vanwoerkom, “An ellipsoidal mirror time-of-flight photoelectron energy analyzer,” Rev. Sci. Instrum. 66, 5512–5515 (1995).
[CrossRef]

Whidden, T.

X. Bao, P. Lu, T. Whidden, “A novel way of improving the collection efficiency and image quality of glowbar to mid-IR fibers,” in Infrared Glass Optical Fibers and Their Applications, M. Saad, ed., Proc. SPIE3416, 213–219 (1998).
[CrossRef]

T. Whidden, X. Bao, J. Taylor, M. Couturier, P. Lu, Z. Xiaozhong, S. Romet, “In situ studies of TEOS/ozone CVD: experimental considerations for probing reaction boundary layers in commercial CVD equipment,” in Proceedings of the 194th Meeting of the Electrochemical Society, PV 98–23 (The Electrochemical Society, Pennington, N.J., 1998), pp. 153–160.

Xiaozhong, Z.

T. Whidden, X. Bao, J. Taylor, M. Couturier, P. Lu, Z. Xiaozhong, S. Romet, “In situ studies of TEOS/ozone CVD: experimental considerations for probing reaction boundary layers in commercial CVD equipment,” in Proceedings of the 194th Meeting of the Electrochemical Society, PV 98–23 (The Electrochemical Society, Pennington, N.J., 1998), pp. 153–160.

Eng. Appl. Artif. Intell. (1)

J. D. Jones, P. D. Jero, “In situ control of chemical vapor deposition for fiber coating,” Eng. Appl. Artif. Intell. 11(Issue 5), 619–626 (1998).

J. Cryst. Growth (1)

S. Salim, K. F. Jensen, R. D. Driver, “Monitoring of gas-phase species in metalorganic vapor epitaxy by fiber-optics-based Fourier transform infrared spectroscopy,” J. Cryst. Growth 145, 28–35 (1994).
[CrossRef]

J. Vac. Sci. Technol. (1)

J. A. O’Neill, M. L. Passow, T. J. Cotler, “Infrared absorption spectroscopy of monitoring condensable gases in chemical vapor deposition applications,” J. Vac. Sci. Technol. A12, 839–845 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. I. Hanaoka, H. Ohnishi, K. Tachibana, “In situ measurements of gas-phase reactions on metalorganic chemical vapor deposition of copper films by Fourier transform infrared spectroscopy,” Jpn. J. Appl. Phys. 32, 4774–4778 (1993).
[CrossRef]

Opt. Rev. (1)

M. Saito, K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 524–538 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

P. Hansch, J. R. Norby, S. H. Evans, L. D. Vanwoerkom, “An ellipsoidal mirror time-of-flight photoelectron energy analyzer,” Rev. Sci. Instrum. 66, 5512–5515 (1995).
[CrossRef]

Thin Solid Films (1)

K. I. Hanaoka, K. Tachibana, H. Ohnishi, “In situ measurements of gas-phase reactions during the chemical vapor deposition of copper using Fourier-transform infrared spectroscopy,” Thin Solid Films 262, 209–217 (1995).
[CrossRef]

Other (3)

Semiconductor Industry Association, The 1997 National Technology Roadmap for Semiconductors (SEMATECH, Austin, Tex., 1997) (URL: http://notes.sematech.org/ntrs/pubintrs.nsf ).

X. Bao, P. Lu, T. Whidden, “A novel way of improving the collection efficiency and image quality of glowbar to mid-IR fibers,” in Infrared Glass Optical Fibers and Their Applications, M. Saad, ed., Proc. SPIE3416, 213–219 (1998).
[CrossRef]

T. Whidden, X. Bao, J. Taylor, M. Couturier, P. Lu, Z. Xiaozhong, S. Romet, “In situ studies of TEOS/ozone CVD: experimental considerations for probing reaction boundary layers in commercial CVD equipment,” in Proceedings of the 194th Meeting of the Electrochemical Society, PV 98–23 (The Electrochemical Society, Pennington, N.J., 1998), pp. 153–160.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Current configuration for measuring the gas concentrations in a CVD chamber by using a FTIR spectrometer. MCT, mercury cadmium telluride.

Fig. 2
Fig. 2

Configuration of an IR fiber bundle composed of six zirconium-fluoride and two silver-halide fibers.

Fig. 3
Fig. 3

Diagram of a modified SMA connector.

Fig. 4
Fig. 4

Configuration for testing the ellipsoid reflector.

Fig. 5
Fig. 5

Comparison results of the spectrum intensity with a parabolic mirror and with an ellipsoid reflector: a, with an ellipsoid reflector; b, with a parabolic mirror.

Fig. 6
Fig. 6

Configuration for measuring gas concentration in a CVD chamber by using an IR fiber bundle.

Fig. 7
Fig. 7

Absorption spectrum of TEOS measured by using the configuration of Fig. 6.

Tables (1)

Tables Icon

Table 1 Light Beam Characters in the CVD Chamber of Two Sensing Configurations (with and without a Fiber Bundle)

Metrics