Abstract

A simple and highly sensitive phase-demodulation technique is proposed, and its use for a fiber Bragg grating strain sensor is experimentally demonstrated. Sampling a phase-modulated Mach–Zehnder output with controlled time delay produced two quadrature data streams that have relative quadrature phase difference (90°). The Bragg wavelength-dependent phase information is extracted by application of digital arctangent function and phase unwrapping to the quadrature signals. By use of this technique with a reference grating, strain sensing at as much as a 30-kHz sampling rate was obtained with strain resolution of 3.5 microstrains and 6 nanostrains/ Hzin quasi-static and dynamic strain measurements, respectively.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. JQE-18, 1647–1653 (1982).
    [CrossRef]
  2. Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1585 (1997).
    [CrossRef]
  3. M. Kobayashi, K. Takada, J. Noda, “Optical-frequency encoder using polarization-maintaining fiber,” J. Lightwave Technol. 8, 1697–1701 (1990).
    [CrossRef]
  4. K. Takada, “High-resolution OFDR with incorporated fiber-optic frequency encoder,” IEEE Photon. Technol. Lett. 4, 1069–1072 (1992).
    [CrossRef]
  5. K. P. Koo, A. B. Tveten, A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
    [CrossRef]
  6. D. W. Stowe, T. Y. Hsu, “Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator,” J. Lightwave Technol. 1, 519–523 (1983).
    [CrossRef]
  7. Y. L. Lo, “In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing,” IEEE Photon. Technol. Lett. 10, 1003–1005 (1998).
    [CrossRef]
  8. M. Schmidt, N. Furstenau, “Fiber-optic extrinsic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999).
    [CrossRef]
  9. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
    [CrossRef]
  10. B. V. Dorrio, J. L. Fernandez, “Phase-evaluation methods in whole-field optical measurement techniques,” Meas. Sci. Technol. 10, R33–R55 (1999).
    [CrossRef]
  11. R. S. Weis, A. D. Kersey, T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photon. Technol. Lett. 6, 1469–1471 (1994).
    [CrossRef]
  12. A. D. Kersey, T. A. Berkoff, W. W. Morey, “Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18, 72–74 (1993).
    [CrossRef] [PubMed]

1999 (2)

B. V. Dorrio, J. L. Fernandez, “Phase-evaluation methods in whole-field optical measurement techniques,” Meas. Sci. Technol. 10, R33–R55 (1999).
[CrossRef]

M. Schmidt, N. Furstenau, “Fiber-optic extrinsic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999).
[CrossRef]

1998 (1)

Y. L. Lo, “In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing,” IEEE Photon. Technol. Lett. 10, 1003–1005 (1998).
[CrossRef]

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1585 (1997).
[CrossRef]

1994 (1)

R. S. Weis, A. D. Kersey, T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photon. Technol. Lett. 6, 1469–1471 (1994).
[CrossRef]

1993 (1)

1992 (1)

K. Takada, “High-resolution OFDR with incorporated fiber-optic frequency encoder,” IEEE Photon. Technol. Lett. 4, 1069–1072 (1992).
[CrossRef]

1990 (1)

M. Kobayashi, K. Takada, J. Noda, “Optical-frequency encoder using polarization-maintaining fiber,” J. Lightwave Technol. 8, 1697–1701 (1990).
[CrossRef]

1983 (1)

D. W. Stowe, T. Y. Hsu, “Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator,” J. Lightwave Technol. 1, 519–523 (1983).
[CrossRef]

1982 (2)

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. JQE-18, 1647–1653 (1982).
[CrossRef]

K. P. Koo, A. B. Tveten, A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Berkoff, T. A.

R. S. Weis, A. D. Kersey, T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photon. Technol. Lett. 6, 1469–1471 (1994).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18, 72–74 (1993).
[CrossRef] [PubMed]

Chang, C. C.

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1585 (1997).
[CrossRef]

Dandridge, A.

K. P. Koo, A. B. Tveten, A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. JQE-18, 1647–1653 (1982).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Dorrio, B. V.

B. V. Dorrio, J. L. Fernandez, “Phase-evaluation methods in whole-field optical measurement techniques,” Meas. Sci. Technol. 10, R33–R55 (1999).
[CrossRef]

Fernandez, J. L.

B. V. Dorrio, J. L. Fernandez, “Phase-evaluation methods in whole-field optical measurement techniques,” Meas. Sci. Technol. 10, R33–R55 (1999).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Furstenau, N.

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. JQE-18, 1647–1653 (1982).
[CrossRef]

Hsu, T. Y.

D. W. Stowe, T. Y. Hsu, “Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator,” J. Lightwave Technol. 1, 519–523 (1983).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

R. S. Weis, A. D. Kersey, T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photon. Technol. Lett. 6, 1469–1471 (1994).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18, 72–74 (1993).
[CrossRef] [PubMed]

Kobayashi, M.

M. Kobayashi, K. Takada, J. Noda, “Optical-frequency encoder using polarization-maintaining fiber,” J. Lightwave Technol. 8, 1697–1701 (1990).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

K. P. Koo, A. B. Tveten, A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Lo, Y. L.

Y. L. Lo, “In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing,” IEEE Photon. Technol. Lett. 10, 1003–1005 (1998).
[CrossRef]

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1585 (1997).
[CrossRef]

Morey, W. W.

Noda, J.

M. Kobayashi, K. Takada, J. Noda, “Optical-frequency encoder using polarization-maintaining fiber,” J. Lightwave Technol. 8, 1697–1701 (1990).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Schmidt, M.

Sirkis, J. S.

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1585 (1997).
[CrossRef]

Stowe, D. W.

D. W. Stowe, T. Y. Hsu, “Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator,” J. Lightwave Technol. 1, 519–523 (1983).
[CrossRef]

Takada, K.

K. Takada, “High-resolution OFDR with incorporated fiber-optic frequency encoder,” IEEE Photon. Technol. Lett. 4, 1069–1072 (1992).
[CrossRef]

M. Kobayashi, K. Takada, J. Noda, “Optical-frequency encoder using polarization-maintaining fiber,” J. Lightwave Technol. 8, 1697–1701 (1990).
[CrossRef]

Tveten, A. B.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. JQE-18, 1647–1653 (1982).
[CrossRef]

K. P. Koo, A. B. Tveten, A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[CrossRef]

Weis, R. S.

R. S. Weis, A. D. Kersey, T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photon. Technol. Lett. 6, 1469–1471 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

K. P. Koo, A. B. Tveten, A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. JQE-18, 1647–1653 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. L. Lo, “In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing,” IEEE Photon. Technol. Lett. 10, 1003–1005 (1998).
[CrossRef]

R. S. Weis, A. D. Kersey, T. A. Berkoff, “A four-element fiber grating sensor array with phase-sensitive detection,” IEEE Photon. Technol. Lett. 6, 1469–1471 (1994).
[CrossRef]

K. Takada, “High-resolution OFDR with incorporated fiber-optic frequency encoder,” IEEE Photon. Technol. Lett. 4, 1069–1072 (1992).
[CrossRef]

J. Lightwave Technol. (4)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Y. L. Lo, J. S. Sirkis, C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15, 1578–1585 (1997).
[CrossRef]

M. Kobayashi, K. Takada, J. Noda, “Optical-frequency encoder using polarization-maintaining fiber,” J. Lightwave Technol. 8, 1697–1701 (1990).
[CrossRef]

D. W. Stowe, T. Y. Hsu, “Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator,” J. Lightwave Technol. 1, 519–523 (1983).
[CrossRef]

Meas. Sci. Technol. (1)

B. V. Dorrio, J. L. Fernandez, “Phase-evaluation methods in whole-field optical measurement techniques,” Meas. Sci. Technol. 10, R33–R55 (1999).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of quadrature sampling: a, PZT drive signal; b, TTL square wave synchronized to a; c, sampling clock 1, generated by the rise step of b; d, Sampling clock 2, delayed by Δt from c. PD, photodetector.

Fig. 2
Fig. 2

Experimental setup: EDF BBS, erbium-doped fiber broadband source; PD, photodetector; DAQ, data acquisition.

Fig. 3
Fig. 3

Power transfer function of the M/Z interferometer (upper trace) and a reflection spectrum of the fiber grating sensor.

Fig. 4
Fig. 4

Lissajous patterns with several time delays. The values of Δt are (in seconds) a, 1 × 10-6; b, 2 × 10-4; c, 2.22 × 10-4; and d, 2.44 × 10-4.

Fig. 5
Fig. 5

(a) Raw sampled signals. (b) Processed phase signal (solid curve) and foil strain gauge output.

Fig. 6
Fig. 6

Reconstructed strain waveforms when different forms of drive voltages were applied to the PZT to which the fiber grating sensor was attached.

Fig. 7
Fig. 7

Power spectrum when a 6-µstrain rms, 2-kHz sine waveform was applied.

Fig. 8
Fig. 8

Quasi-static strain measurement: thermal fluctuation compensated and uncompensated output.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

It=I¯1+k cosωt+ψΔλ+ϕt,
Δψλ2πndλ2 Δλ=2πndλ2 κΔε,
OPD×Δk=2.355,

Metrics