Abstract

Research on wavelength selection of CO2 laser lines for range-resolved remote sensing of atmospheric ammonia by use of a coherent differential absorption lidar system is described. Four laser line pairs are suggested for different levels of ammonia concentrations from approximately a few parts per billion to 1 part per million in a polluted atmosphere. The most suitable line for measuring ambient ammonia concentrations is 9R(30), because it has the highest absorption coefficient. 10R(14) has the lowest absorption coefficient, making it suitable for strong source mapping. 10R(8) and 10P(32) are best for intermediate levels of ammonia concentration. Absorption coefficients of ammonia calculated from the HITRAN96 database are in good agreement (mostly within ±10%) with other experimental results. Sensitivity of measurement, interference from water-vapor lines with typical humidity in the summer, and sensitivity of ammonia absorption cross section to temperature and pressure are analyzed and calculated for the four wavelength pairs. The results show that the interference from water-vapor lines is easily correctable to a negligible amount, and errors caused by uncertainties in temperature and pressure are insignificant.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Wexler, A. Eldering, S. N. Pandis, G. R. Cass, J. H. Seinfeld, K. C. Moon, S. Hering, “Modeling aerosol processes and visibility based on the Southern California Air Quality Study data,” (California Air Resources Board, Sacramento, Calif., 1992).
  2. A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
    [CrossRef] [PubMed]
  3. J. G. Hawley, R. E. Warren, D. D. Powell, D. E. Cooper, T. F. Gallagher, B. K. Cantrell, “Remote and in situ detection of atmospheric trace gases: infrared spectroscopy for ammonia,” (SRI International, Menlo Park, Calif.December1985).
  4. G. N. Pearson, B. J. Rye, “The frequency fidelity of a compact CO2 Doppler lidar transmitter,” Appl. Opt. 31, 6475–6484 (1992).
    [CrossRef] [PubMed]
  5. G. N. Pearson, “A high-pulse-repetition-frequency CO2 Doppler lidar for atmospheric monitoring,” Rev. Sci. Instrum. 64, 1155–1157 (1993).
    [CrossRef]
  6. W. A. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Preliminary results from a mini-MOPA CO2 Doppler lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of the 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.
  7. M. Intrieri, W. L. Eberhard, W. A. Brewer, “Performance of the mini-MOPA, CO2 Doppler lidar, cloud lidar at CART,” in Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting (U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Environmental Sciences Division, Washington, D.C. 10585, 1998), pp. 348–349.
  8. W. A. Brewer, R. M. Hardesty, W. L. Eberhard, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the 19th International Laser Radar Conference (NASA Langley Research Center, Hampton, Va. 23681-2199, July1998), pp. 565–568.
  9. E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
    [CrossRef]
  10. A. Ben-David, “Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species,” Appl. Opt. 38, 2616–2624 (1999).
    [CrossRef]
  11. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
    [CrossRef]
  12. E. D. Hinkley, R. T. Ku, K. W. Nill, J. F. Butler, “Long-path monitoring: advanced instrumentation with a tunable diode laser,” Appl. Opt. 15, 1653–1655 (1976).
    [CrossRef] [PubMed]
  13. R. R. Patty, G. M. Russworm, W. A. McClenny, D. R. Morgan, “CO2 laser absorption coefficients for determining ambient levels of O3, NH3, and C2H2,” Appl. Opt. 13, 2850–2854 (1974).
    [CrossRef] [PubMed]
  14. R. J. Brewer, C. W. Bruce, “Photoacoustic spectroscopy of NH3 at the 9-µm and 10-µm 12C16O2 laser wavelengths,” Appl. Opt. 17, 3746–3749 (1978).
    [CrossRef] [PubMed]
  15. A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption coefficients of various pollutant gases at CO2 laser wavelengths; application to the remote sensing of those pollutants,” Appl. Opt. 17, 391–393 (1978).
    [CrossRef]
  16. L. T. Molina, W. B. Grant, “FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases: implications for laser remote sensing,” Appl. Opt. 23, 3893–3900 (1984).
    [CrossRef] [PubMed]
  17. W. Schnell, G. Fischer, “Carbon dioxide laser absorption coefficients of various air pollutants,” Appl. Opt. 14, 2058–2059 (1975).
    [CrossRef] [PubMed]
  18. G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-vapor continuum CO2 absorption spectra between 27 °C and -10 °C,” Appl. Opt. 22, 3701–3710 (1983).
    [CrossRef] [PubMed]

1999

1998

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

1993

G. N. Pearson, “A high-pulse-repetition-frequency CO2 Doppler lidar for atmospheric monitoring,” Rev. Sci. Instrum. 64, 1155–1157 (1993).
[CrossRef]

1992

1990

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
[CrossRef]

1985

1984

1983

1978

1976

1975

1974

Ben-David, A.

Brewer, R. J.

Brewer, W. A.

W. A. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Preliminary results from a mini-MOPA CO2 Doppler lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of the 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

W. A. Brewer, R. M. Hardesty, W. L. Eberhard, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the 19th International Laser Radar Conference (NASA Langley Research Center, Hampton, Va. 23681-2199, July1998), pp. 565–568.

M. Intrieri, W. L. Eberhard, W. A. Brewer, “Performance of the mini-MOPA, CO2 Doppler lidar, cloud lidar at CART,” in Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting (U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Environmental Sciences Division, Washington, D.C. 10585, 1998), pp. 348–349.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Bruce, C. W.

Butler, J. F.

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Cantrell, B. K.

J. G. Hawley, R. E. Warren, D. D. Powell, D. E. Cooper, T. F. Gallagher, B. K. Cantrell, “Remote and in situ detection of atmospheric trace gases: infrared spectroscopy for ammonia,” (SRI International, Menlo Park, Calif.December1985).

Cass, G. R.

A. S. Wexler, A. Eldering, S. N. Pandis, G. R. Cass, J. H. Seinfeld, K. C. Moon, S. Hering, “Modeling aerosol processes and visibility based on the Southern California Air Quality Study data,” (California Air Resources Board, Sacramento, Calif., 1992).

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Charpentier, H.

Comera, J.

Cooper, D. E.

J. G. Hawley, R. E. Warren, D. D. Powell, D. E. Cooper, T. F. Gallagher, B. K. Cantrell, “Remote and in situ detection of atmospheric trace gases: infrared spectroscopy for ammonia,” (SRI International, Menlo Park, Calif.December1985).

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

DeFeo, W. E.

Eberhard, W. L.

M. Intrieri, W. L. Eberhard, W. A. Brewer, “Performance of the mini-MOPA, CO2 Doppler lidar, cloud lidar at CART,” in Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting (U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Environmental Sciences Division, Washington, D.C. 10585, 1998), pp. 348–349.

W. A. Brewer, R. M. Hardesty, W. L. Eberhard, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the 19th International Laser Radar Conference (NASA Langley Research Center, Hampton, Va. 23681-2199, July1998), pp. 565–568.

W. A. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Preliminary results from a mini-MOPA CO2 Doppler lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of the 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

Edward, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Eldering, A.

A. S. Wexler, A. Eldering, S. N. Pandis, G. R. Cass, J. H. Seinfeld, K. C. Moon, S. Hering, “Modeling aerosol processes and visibility based on the Southern California Air Quality Study data,” (California Air Resources Board, Sacramento, Calif., 1992).

Fischer, G.

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Force, A. P.

Gallagher, T. F.

J. G. Hawley, R. E. Warren, D. D. Powell, D. E. Cooper, T. F. Gallagher, B. K. Cantrell, “Remote and in situ detection of atmospheric trace gases: infrared spectroscopy for ammonia,” (SRI International, Menlo Park, Calif.December1985).

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Gelbwachs, J. A.

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Grant, W. B.

Hardesty, R. M.

W. A. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Preliminary results from a mini-MOPA CO2 Doppler lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of the 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

W. A. Brewer, R. M. Hardesty, W. L. Eberhard, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the 19th International Laser Radar Conference (NASA Langley Research Center, Hampton, Va. 23681-2199, July1998), pp. 565–568.

Hawley, J. G.

J. G. Hawley, R. E. Warren, D. D. Powell, D. E. Cooper, T. F. Gallagher, B. K. Cantrell, “Remote and in situ detection of atmospheric trace gases: infrared spectroscopy for ammonia,” (SRI International, Menlo Park, Calif.December1985).

Hering, S.

A. S. Wexler, A. Eldering, S. N. Pandis, G. R. Cass, J. H. Seinfeld, K. C. Moon, S. Hering, “Modeling aerosol processes and visibility based on the Southern California Air Quality Study data,” (California Air Resources Board, Sacramento, Calif., 1992).

Hinkley, E. D.

Intrieri, M.

M. Intrieri, W. L. Eberhard, W. A. Brewer, “Performance of the mini-MOPA, CO2 Doppler lidar, cloud lidar at CART,” in Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting (U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Environmental Sciences Division, Washington, D.C. 10585, 1998), pp. 348–349.

Jaussaud, C.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Killinger, D. K.

Ku, R. T.

Loper, G. L.

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Mayer, A.

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

McClenny, W. A.

Menyuk, N.

Molina, L. T.

Moon, K. C.

A. S. Wexler, A. Eldering, S. N. Pandis, G. R. Cass, J. H. Seinfeld, K. C. Moon, S. Hering, “Modeling aerosol processes and visibility based on the Southern California Air Quality Study data,” (California Air Resources Board, Sacramento, Calif., 1992).

Morgan, D. R.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Nill, K. W.

O’Neill, M. A.

Pandis, S. N.

A. S. Wexler, A. Eldering, S. N. Pandis, G. R. Cass, J. H. Seinfeld, K. C. Moon, S. Hering, “Modeling aerosol processes and visibility based on the Southern California Air Quality Study data,” (California Air Resources Board, Sacramento, Calif., 1992).

Patty, R. R.

Pearson, G. N.

G. N. Pearson, “A high-pulse-repetition-frequency CO2 Doppler lidar for atmospheric monitoring,” Rev. Sci. Instrum. 64, 1155–1157 (1993).
[CrossRef]

G. N. Pearson, B. J. Rye, “The frequency fidelity of a compact CO2 Doppler lidar transmitter,” Appl. Opt. 31, 6475–6484 (1992).
[CrossRef] [PubMed]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Powell, D. D.

J. G. Hawley, R. E. Warren, D. D. Powell, D. E. Cooper, T. F. Gallagher, B. K. Cantrell, “Remote and in situ detection of atmospheric trace gases: infrared spectroscopy for ammonia,” (SRI International, Menlo Park, Calif.December1985).

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Russworm, G. M.

Rye, B. J.

G. N. Pearson, B. J. Rye, “The frequency fidelity of a compact CO2 Doppler lidar transmitter,” Appl. Opt. 31, 6475–6484 (1992).
[CrossRef] [PubMed]

W. A. Brewer, R. M. Hardesty, W. L. Eberhard, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the 19th International Laser Radar Conference (NASA Langley Research Center, Hampton, Va. 23681-2199, July1998), pp. 565–568.

W. A. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Preliminary results from a mini-MOPA CO2 Doppler lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of the 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

Schnell, W.

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Seinfeld, J. H.

A. S. Wexler, A. Eldering, S. N. Pandis, G. R. Cass, J. H. Seinfeld, K. C. Moon, S. Hering, “Modeling aerosol processes and visibility based on the Southern California Air Quality Study data,” (California Air Resources Board, Sacramento, Calif., 1992).

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Warren, R. E.

J. G. Hawley, R. E. Warren, D. D. Powell, D. E. Cooper, T. F. Gallagher, B. K. Cantrell, “Remote and in situ detection of atmospheric trace gases: infrared spectroscopy for ammonia,” (SRI International, Menlo Park, Calif.December1985).

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Wexler, A. S.

A. S. Wexler, A. Eldering, S. N. Pandis, G. R. Cass, J. H. Seinfeld, K. C. Moon, S. Hering, “Modeling aerosol processes and visibility based on the Southern California Air Quality Study data,” (California Air Resources Board, Sacramento, Calif., 1992).

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Zanzottera, E.

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
[CrossRef]

Appl. Opt.

R. R. Patty, G. M. Russworm, W. A. McClenny, D. R. Morgan, “CO2 laser absorption coefficients for determining ambient levels of O3, NH3, and C2H2,” Appl. Opt. 13, 2850–2854 (1974).
[CrossRef] [PubMed]

A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption coefficients of various pollutant gases at CO2 laser wavelengths; application to the remote sensing of those pollutants,” Appl. Opt. 17, 391–393 (1978).
[CrossRef]

R. J. Brewer, C. W. Bruce, “Photoacoustic spectroscopy of NH3 at the 9-µm and 10-µm 12C16O2 laser wavelengths,” Appl. Opt. 17, 3746–3749 (1978).
[CrossRef] [PubMed]

L. T. Molina, W. B. Grant, “FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases: implications for laser remote sensing,” Appl. Opt. 23, 3893–3900 (1984).
[CrossRef] [PubMed]

A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
[CrossRef] [PubMed]

G. N. Pearson, B. J. Rye, “The frequency fidelity of a compact CO2 Doppler lidar transmitter,” Appl. Opt. 31, 6475–6484 (1992).
[CrossRef] [PubMed]

A. Ben-David, “Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species,” Appl. Opt. 38, 2616–2624 (1999).
[CrossRef]

G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-vapor continuum CO2 absorption spectra between 27 °C and -10 °C,” Appl. Opt. 22, 3701–3710 (1983).
[CrossRef] [PubMed]

W. Schnell, G. Fischer, “Carbon dioxide laser absorption coefficients of various air pollutants,” Appl. Opt. 14, 2058–2059 (1975).
[CrossRef] [PubMed]

E. D. Hinkley, R. T. Ku, K. W. Nill, J. F. Butler, “Long-path monitoring: advanced instrumentation with a tunable diode laser,” Appl. Opt. 15, 1653–1655 (1976).
[CrossRef] [PubMed]

Crit. Rev. Anal. Chem.

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edward, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). (HITRAN is the acronym of high-resolution transmission molecular absorption database. The database is a line-by-line compilation of molecular spectroscopic parameters derived from a vast amount of separate experimental results gathered by the Air Force Phillips Laboratory. HITRAN96 is the latest version released on CD-ROM in 1996 and is a component of a larger set of spectroscopic data and software called HAWKS.)
[CrossRef]

Rev. Sci. Instrum.

G. N. Pearson, “A high-pulse-repetition-frequency CO2 Doppler lidar for atmospheric monitoring,” Rev. Sci. Instrum. 64, 1155–1157 (1993).
[CrossRef]

Other

W. A. Brewer, B. J. Rye, R. M. Hardesty, W. L. Eberhard, “Preliminary results from a mini-MOPA CO2 Doppler lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of the 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

M. Intrieri, W. L. Eberhard, W. A. Brewer, “Performance of the mini-MOPA, CO2 Doppler lidar, cloud lidar at CART,” in Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting (U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Environmental Sciences Division, Washington, D.C. 10585, 1998), pp. 348–349.

W. A. Brewer, R. M. Hardesty, W. L. Eberhard, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the 19th International Laser Radar Conference (NASA Langley Research Center, Hampton, Va. 23681-2199, July1998), pp. 565–568.

A. S. Wexler, A. Eldering, S. N. Pandis, G. R. Cass, J. H. Seinfeld, K. C. Moon, S. Hering, “Modeling aerosol processes and visibility based on the Southern California Air Quality Study data,” (California Air Resources Board, Sacramento, Calif., 1992).

J. G. Hawley, R. E. Warren, D. D. Powell, D. E. Cooper, T. F. Gallagher, B. K. Cantrell, “Remote and in situ detection of atmospheric trace gases: infrared spectroscopy for ammonia,” (SRI International, Menlo Park, Calif.December1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

CO2 wavelength pair: on line 9R(30) (9.22 µm, 1084.635 cm-1) and off line 9R(28) (9.23 µm, 1083.479 cm-1). Note that the ammonia line cluster is close to the 9R(30) laser line but with the line centers slightly shorter than the CO2 line.

Fig. 2
Fig. 2

Absorption cross section as a function of wavelength for the six ammonia lines near the CO29R(30) line. The latter is indicated by the thick vertical line.

Fig. 3
Fig. 3

Absorption cross section total of the six ammonia lines shown in Fig. 6. The vertical thick line represents the CO29R(30) line.

Fig. 4
Fig. 4

Two-way absorption coefficient of ammonia and water vapor: 1, with 10 ppb of NH3; 2, 3, two H2O lines (centered at 1084.8271 and 1085.0700 cm-1) with a water-vapor mixing ratio of 1%.

Fig. 5
Fig. 5

Absorption cross section of a single NH3 line (centered at 971.882000 cm-1) close to the CO210R(14) line (971.930266 cm-1). The thick vertical line indicates the laser wavelength.

Fig. 6
Fig. 6

Two-way absorption coefficient of ammonia and water vapor: 1, with 733 ppb of NH3; 2, 3, 4, three H2O lines (centered at 971.363900, 971.65719, and 972.347100 cm-1) with a water-vapor mixing ratio of 3.34%.

Fig. 7
Fig. 7

Absorption cross section of NH3 near the CO2 laser lines of 10R(6) and 10R(8), with the two vertical lines labeled 1 and 2, respectively. The thick curve represents the total absorption cross section, the thin curves represent the major NH3 lines that contribute to the absorption peaks near 10R(6) and 10R(8) at (a) 760 Torr and (b) 360 Torr.

Fig. 8
Fig. 8

Two-way absorption coefficients of ammonia and water vapor near the 10R(6) and 10R(8) lines of the CO2 laser: 1, NH3 at 100 ppb; 2, NH3 at 200 ppb; 3, H2O at 3.34%. The thick vertical lines indicate the laser wavelength for 10R(6) (left-hand side) and for 10R(8) (right-hand side), respectively.

Fig. 9
Fig. 9

Absorption cross section of NH3 lines near the CO2 laser line of 10P(32). The thick curve represents the total absorption cross section; the thin curves represent the major NH3 lines that contribute to the absorption peaks near 10P(32). The vertical line represents 10P(32).

Fig. 10
Fig. 10

Two-way absorption coefficients of ammonia and water vapor near 10P(32) of the CO2 laser: 1, 2, 3, NH3 at 10, 50, and 100 ppb, respectively; 4, H2O at 3.34%. The thick vertical line represents the CO210P(32) line.

Fig. 11
Fig. 11

Two-way absorption coefficients versus ammonia concentrations at (a) 9R(30), (b) 10R(14), (c) 10R(8) and 10P(32) and 1 and 2, respectively.

Fig. 12
Fig. 12

Absorption coefficients of water-vapor continuum at 10R(18) (10.26 µm) for various relative humidities (%) and temperatures (in celsius).

Tables (5)

Tables Icon

Table 1 HITRAN96 and Experimental Absorption Coefficients (in cm-1 atm-1) of Ammonia at Atmospheric Pressure

Tables Icon

Table 2 HITRAN96 and Experimental Absorption Coefficients (in cm-1 atm-1) of Ammonia at 360 Torr

Tables Icon

Table 3 Measurable Concentration of Ammonia for Different Wavelength Pairs

Tables Icon

Table 4 Maximum Detection Range of Ammonia with the 9.22–9.23-µm Pair at Different Ammonia Concentrations, Atmospheric Temperatures, and Relative Humidities

Tables Icon

Table 5 Relative Change of the Absorption Cross Section with Respect to Temperature

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P1z=C1η1zβ1zT1zz2 exp-2σ10z ρzdz,  P2z=C2η2zβ2zT2zz2 exp-2σ20z ρzdz,
Rz=A+lnη1/η2+lnβ1/β2+lnT1/T2+2σ2-σ10z ρzdz,
dRdz=ddzlnη1/η2+ddzlnβ1/β2+ddzlnT1/T2+2σ2-σ1ρz.
ddz lnβ1β2ddzlnΛλ1Λλ20.
ρz=dRzdz2σ2-σ1,
ρmin=dR/dzmin2σ2-σ1dR/dzmin2σ2,
exp-2σ 0z ρzdz=exp-2 0z αzdz=exp-2τ,
τd=2σ2-σ10z ρzdz=2 0z Δαzdz.
αλ=ST, λ0πΔλ1+λ-λ02Δλ2,
ST, λ0=ST0, λ0exp-E1k1T-1T0=ST0, λ0exp-E1T0-TkTT0=ST0, λ0expE1ΔTkTT0,
1αdαdT=1SdSdT-1ΔλdΔλdT1-2λ-λ021+λ-λ02Δλ2Δλ2.
1SdSdT=E1kT2.
Δλ=Δλ0PP0T0T0.75,
1ΔλdΔλdT=-0.75T.
1αdαdT=E1kT2+0.75T1-2λ-λ021+λ-λ02Δλ2Δλ2=E1kT2+0.75T B.
1αdαdTE1kT2+0.75T.
1αdαdP1P,
dααΔPP

Metrics