Abstract

We have implemented active feedback control in a Q-switched diode-pumped Nd:YVO4 laser by monitoring the fluorescence intensity from the laser crystal. When the initial inversion level indicated by the detected fluorescence has reached a predetermined value, Q switching is initiated. This scheme allowed us to vary the reproducibility of the output pulse peak power and pulse width. The novel active Q-switching approach can reduce the shot-to-shot variations of the output pulse peak power and the pulse width.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.6 and references therein.
  2. R. Scheps, J. F. Myers, “Performance of a diode-pumped laser repetitively Q-switched with a mechanical shutter,” Appl. Opt. 33, 969–978 (1994).
    [Crossref] [PubMed]
  3. T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
    [Crossref]
  4. E. Armandillo, C. Norrie, A. Cosentino, P. Laporta, P. Wazen, P. Maine, “Diode-pumped high-efficiency high-brightness Q-switched Nd:YAG slab laser,” Opt. Lett. 22, 1168–1170 (1997).
    [Crossref] [PubMed]
  5. L. J. Bromley, D. C. Hanna, “Single-frequency Q-switched operation of a diode-laser-pumped Nd:YAG ring laser using an acousto-optic modulator,” Opt. Lett. 16, 378–380 (1991).
    [Crossref] [PubMed]
  6. G. Rustad, K. Stemersen, “Low threshold laser diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 82–89 (1997).
    [Crossref]
  7. G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
    [Crossref]
  8. B. Braun, U. Keller, “Single-frequency Q-switched ring laser with an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 20, 1020–1022 (1996).
    [Crossref]
  9. R. Fluck, B. Braun, E. Gini, H. Melchior, U. Keller, “Passively Q-switched 1.34-µm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
    [Crossref] [PubMed]
  10. B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
    [Crossref]
  11. F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
    [Crossref]
  12. D. L. Smith, J. H. Kelly, M. J. Shoup, “Low cost active–active oscillator utilizing loss feedback control,” Appl. Opt. 29, 786–790 (1990).
    [Crossref] [PubMed]
  13. C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
    [Crossref]
  14. R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
    [Crossref]
  15. E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
    [Crossref]

1998 (1)

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[Crossref]

1997 (3)

1996 (1)

1995 (1)

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[Crossref]

1994 (3)

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[Crossref]

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[Crossref]

R. Scheps, J. F. Myers, “Performance of a diode-pumped laser repetitively Q-switched with a mechanical shutter,” Appl. Opt. 33, 969–978 (1994).
[Crossref] [PubMed]

1991 (1)

1990 (1)

1975 (2)

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[Crossref]

E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
[Crossref]

1966 (1)

C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
[Crossref]

Armandillo, E.

Bradley, L.

E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
[Crossref]

Braun, B.

Bromley, L. J.

Chin, M. K.

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[Crossref]

Cosentino, A.

Danson, C. N.

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[Crossref]

Demayo, T. N.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[Crossref]

Edwards, C. B.

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[Crossref]

Fluck, R.

Gini, E.

Gu, G. Q.

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[Crossref]

Hanna, D. C.

Hargreaves, D.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[Crossref]

Hutchinson, M. H. R.

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[Crossref]

Keller, U.

Kelly, J. H.

Kobayashi, T.

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[Crossref]

Laporta, P.

Lick, G. S.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[Crossref]

Lovberg, R.

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[Crossref]

Maine, P.

Melchior, H.

Mercer, I. P.

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[Crossref]

Myers, J. F.

Norrie, C.

Panarell, E.

E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
[Crossref]

Price, E. V.

C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
[Crossref]

Rogers, G. A.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[Crossref]

Rustad, G.

G. Rustad, K. Stemersen, “Low threshold laser diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 82–89 (1997).
[Crossref]

Scheps, R.

Shoup, M. J.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.6 and references therein.

Smith, D. L.

Stemersen, K.

G. Rustad, K. Stemersen, “Low threshold laser diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 82–89 (1997).
[Crossref]

Taira, T.

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[Crossref]

Thomas, C.

C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
[Crossref]

Ventrudo, B. F.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[Crossref]

Wazen, P.

Wooding, E.

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[Crossref]

Yeoman, M.

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[Crossref]

Zhang, G.

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[Crossref]

Zhou, F.

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[Crossref]

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (3)

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[Crossref]

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[Crossref]

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[Crossref]

IEEE J. Quantum Electron. (4)

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[Crossref]

C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
[Crossref]

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[Crossref]

E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Rustad, K. Stemersen, “Low threshold laser diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 82–89 (1997).
[Crossref]

Opt. Lett. (4)

Other (1)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.6 and references therein.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Block diagram of the active feedback-controlled Q-switched diode-pumped Nd:YVO4 laser. (b) Schematic of the feedback controller. CLK represents CLOCK input and CLR represents CLEAR input.

Fig. 2
Fig. 2

Truth table of the feedback controller. CLK represents CLOCK input and CLR represents CLEAR input.

Fig. 3
Fig. 3

Electrical waveforms.

Fig. 4
Fig. 4

Variation of the (a) output pulse width and pulse peak power and (b) pulse energy with comparator voltage V th. Each point represents an average value that was measured for consecutive shots.

Fig. 5
Fig. 5

Variation of the pulse energy versus changes in the pump current. Comparison of conventional active Q switching at a fixed 40% duty cycle, and fluorescence feedback-controlled active Q switching at a fixed threshold voltage V th of 100 mV. The pulse repetition rate for both systems is 10 kHz.

Fig. 6
Fig. 6

Comparison of the pulse-to-pulse stability of the Q-switched laser between conventional and fluorescence feedback-controlled active Q switching versus changes in the pulse repetition rate: (a) pulse width stability and (b) peak power stability.

Metrics