Abstract

We have implemented active feedback control in a Q-switched diode-pumped Nd:YVO4 laser by monitoring the fluorescence intensity from the laser crystal. When the initial inversion level indicated by the detected fluorescence has reached a predetermined value, Q switching is initiated. This scheme allowed us to vary the reproducibility of the output pulse peak power and pulse width. The novel active Q-switching approach can reduce the shot-to-shot variations of the output pulse peak power and the pulse width.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.6 and references therein.
  2. R. Scheps, J. F. Myers, “Performance of a diode-pumped laser repetitively Q-switched with a mechanical shutter,” Appl. Opt. 33, 969–978 (1994).
    [CrossRef] [PubMed]
  3. T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
    [CrossRef]
  4. E. Armandillo, C. Norrie, A. Cosentino, P. Laporta, P. Wazen, P. Maine, “Diode-pumped high-efficiency high-brightness Q-switched Nd:YAG slab laser,” Opt. Lett. 22, 1168–1170 (1997).
    [CrossRef] [PubMed]
  5. L. J. Bromley, D. C. Hanna, “Single-frequency Q-switched operation of a diode-laser-pumped Nd:YAG ring laser using an acousto-optic modulator,” Opt. Lett. 16, 378–380 (1991).
    [CrossRef] [PubMed]
  6. G. Rustad, K. Stemersen, “Low threshold laser diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 82–89 (1997).
    [CrossRef]
  7. G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
    [CrossRef]
  8. B. Braun, U. Keller, “Single-frequency Q-switched ring laser with an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 20, 1020–1022 (1996).
    [CrossRef]
  9. R. Fluck, B. Braun, E. Gini, H. Melchior, U. Keller, “Passively Q-switched 1.34-µm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
    [CrossRef] [PubMed]
  10. B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
    [CrossRef]
  11. F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
    [CrossRef]
  12. D. L. Smith, J. H. Kelly, M. J. Shoup, “Low cost active–active oscillator utilizing loss feedback control,” Appl. Opt. 29, 786–790 (1990).
    [CrossRef] [PubMed]
  13. C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
    [CrossRef]
  14. R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
    [CrossRef]
  15. E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
    [CrossRef]

1998 (1)

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

1997 (3)

1996 (1)

1995 (1)

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[CrossRef]

1994 (3)

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[CrossRef]

R. Scheps, J. F. Myers, “Performance of a diode-pumped laser repetitively Q-switched with a mechanical shutter,” Appl. Opt. 33, 969–978 (1994).
[CrossRef] [PubMed]

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[CrossRef]

1991 (1)

1990 (1)

1975 (2)

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[CrossRef]

E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
[CrossRef]

1966 (1)

C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
[CrossRef]

Armandillo, E.

Bradley, L.

E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
[CrossRef]

Braun, B.

Bromley, L. J.

Chin, M. K.

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

Cosentino, A.

Danson, C. N.

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[CrossRef]

Demayo, T. N.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[CrossRef]

Edwards, C. B.

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[CrossRef]

Fluck, R.

Gini, E.

Gu, G. Q.

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

Hanna, D. C.

Hargreaves, D.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[CrossRef]

Hutchinson, M. H. R.

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[CrossRef]

Keller, U.

Kelly, J. H.

Kobayashi, T.

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[CrossRef]

Laporta, P.

Lick, G. S.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[CrossRef]

Lovberg, R.

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[CrossRef]

Maine, P.

Melchior, H.

Mercer, I. P.

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[CrossRef]

Myers, J. F.

Norrie, C.

Panarell, E.

E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
[CrossRef]

Price, E. V.

C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
[CrossRef]

Rogers, G. A.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[CrossRef]

Rustad, G.

G. Rustad, K. Stemersen, “Low threshold laser diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 82–89 (1997).
[CrossRef]

Scheps, R.

Shoup, M. J.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.6 and references therein.

Smith, D. L.

Stemersen, K.

G. Rustad, K. Stemersen, “Low threshold laser diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 82–89 (1997).
[CrossRef]

Taira, T.

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[CrossRef]

Thomas, C.

C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
[CrossRef]

Ventrudo, B. F.

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[CrossRef]

Wazen, P.

Wooding, E.

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[CrossRef]

Yeoman, M.

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[CrossRef]

Zhang, G.

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

Zhou, F.

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (3)

B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,” Electron. Lett. 30, 2147–2148 (1994).
[CrossRef]

F. Zhou, I. P. Mercer, M. H. R. Hutchinson, C. N. Danson, C. B. Edwards, “Double-side pumped Ti:sapphire regenerative pre-amplifier operating at 1.053 µm wavelength,” Electron. Lett. 31, 1060–1061 (1995).
[CrossRef]

G. Q. Gu, F. Zhou, G. Zhang, M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

IEEE J. Quantum Electron. (4)

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[CrossRef]

C. Thomas, E. V. Price, “9C4-Feedback control of a Q-switched ruby laser,” IEEE J. Quantum Electron. 2, 617–623 (1966).
[CrossRef]

R. Lovberg, E. Wooding, M. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. 11, 17–21 (1975).
[CrossRef]

E. Panarell, L. Bradley, “Controlled timewise redistribution of laser energy,” IEEE J. Quantum Electron. 11, 181–185 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Rustad, K. Stemersen, “Low threshold laser diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 82–89 (1997).
[CrossRef]

Opt. Lett. (4)

Other (1)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.6 and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Block diagram of the active feedback-controlled Q-switched diode-pumped Nd:YVO4 laser. (b) Schematic of the feedback controller. CLK represents CLOCK input and CLR represents CLEAR input.

Fig. 2
Fig. 2

Truth table of the feedback controller. CLK represents CLOCK input and CLR represents CLEAR input.

Fig. 3
Fig. 3

Electrical waveforms.

Fig. 4
Fig. 4

Variation of the (a) output pulse width and pulse peak power and (b) pulse energy with comparator voltage V th. Each point represents an average value that was measured for consecutive shots.

Fig. 5
Fig. 5

Variation of the pulse energy versus changes in the pump current. Comparison of conventional active Q switching at a fixed 40% duty cycle, and fluorescence feedback-controlled active Q switching at a fixed threshold voltage V th of 100 mV. The pulse repetition rate for both systems is 10 kHz.

Fig. 6
Fig. 6

Comparison of the pulse-to-pulse stability of the Q-switched laser between conventional and fluorescence feedback-controlled active Q switching versus changes in the pulse repetition rate: (a) pulse width stability and (b) peak power stability.

Metrics