Abstract

The near-infrared absorption of two chromophore functionalized polymers and combinations of seventeen different guest chromophores in seven different organic polymer matrices were investigated to assess the effect of chromophore structure and environment on absorption. The near-infrared absorption losses were found to be dramatically larger by as much as 2–3 orders of magnitude in polymer matrices than in solution. Furthermore, the absorption of the long-wavelength tail appears to be related to the glass transition temperature of the polymer matrix that contains the chromophore. These results are interpreted in terms of inhomogeneous broadening.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. As in the Proceedings of the Plastic Optical Fibers International Conference, San Jose28–30 June 99, www.pofig.com POF Interest Group.
  2. Y. Koike, Y. T. Ishigure, T. M. Satoh, E. Nihei, “High-speed photonics polymer and its application,” Pure Appl. Opt. 7, 201–210 (1998).
    [CrossRef]
  3. D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
    [CrossRef]
  4. As reviewed in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa, S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1996), and references therein.
  5. G. Stegeman, D. Hagan, L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
    [CrossRef]
  6. A. Otomo, M. Jäger, G. Stegeman, M. Flipse, M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
    [CrossRef]
  7. J. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–456 (1977).
    [CrossRef]
  8. K. Singer, M. Kuzyk, J. Söhn, “Second order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]
  9. The guest chromophores were all prepared and characterized by standard methods. Many of these chromophores were originally prepared for use in studies of thermal stability: R. B. Prime, G. Y. Chiou, R. J. Twieg, “Evaluation of the thermal stability of some nonlinear optical chromophores,” J. Therm. Anal. 46, 1133–1150 (1996); R. J. Twieg, C. W. Dirk, “Design, properties and applications of nonlinear optical chromophores,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar, J. D. Swalen, eds. (Gordon & Breach, Newark, N.J., 1996).
  10. N. Berard, M. Paventi, K. P. Chan, A. S. Hay, “Polymers from 4-(4-hydroxyphenyl)phthalazin-1-one,” Makromol. Chem. Macromol. Symp. 77, 379–388 (1994).
  11. D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
    [CrossRef]
  12. R. Jeng, Y. Chen, A. Jain, J. Kumar, S. Tripathy, “Stable second-order nonlinear optical polyimide/inorganic composite,” Chem. Mater. 4, 1141–1144 (1992).
    [CrossRef]
  13. Q. Zhang, M. Canva, G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
    [CrossRef]
  14. A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

1998

Y. Koike, Y. T. Ishigure, T. M. Satoh, E. Nihei, “High-speed photonics polymer and its application,” Pure Appl. Opt. 7, 201–210 (1998).
[CrossRef]

Q. Zhang, M. Canva, G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

1997

D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

1996

G. Stegeman, D. Hagan, L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

The guest chromophores were all prepared and characterized by standard methods. Many of these chromophores were originally prepared for use in studies of thermal stability: R. B. Prime, G. Y. Chiou, R. J. Twieg, “Evaluation of the thermal stability of some nonlinear optical chromophores,” J. Therm. Anal. 46, 1133–1150 (1996); R. J. Twieg, C. W. Dirk, “Design, properties and applications of nonlinear optical chromophores,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar, J. D. Swalen, eds. (Gordon & Breach, Newark, N.J., 1996).

1994

N. Berard, M. Paventi, K. P. Chan, A. S. Hay, “Polymers from 4-(4-hydroxyphenyl)phthalazin-1-one,” Makromol. Chem. Macromol. Symp. 77, 379–388 (1994).

1992

R. Jeng, Y. Chen, A. Jain, J. Kumar, S. Tripathy, “Stable second-order nonlinear optical polyimide/inorganic composite,” Chem. Mater. 4, 1141–1144 (1992).
[CrossRef]

1991

D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[CrossRef]

1987

1977

J. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–456 (1977).
[CrossRef]

Berard, N.

N. Berard, M. Paventi, K. P. Chan, A. S. Hay, “Polymers from 4-(4-hydroxyphenyl)phthalazin-1-one,” Makromol. Chem. Macromol. Symp. 77, 379–388 (1994).

Canva, M.

Q. Zhang, M. Canva, G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Chan, K. P.

N. Berard, M. Paventi, K. P. Chan, A. S. Hay, “Polymers from 4-(4-hydroxyphenyl)phthalazin-1-one,” Makromol. Chem. Macromol. Symp. 77, 379–388 (1994).

Chen, A.

D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Chen, Y.

R. Jeng, Y. Chen, A. Jain, J. Kumar, S. Tripathy, “Stable second-order nonlinear optical polyimide/inorganic composite,” Chem. Mater. 4, 1141–1144 (1992).
[CrossRef]

Chiou, G. Y.

The guest chromophores were all prepared and characterized by standard methods. Many of these chromophores were originally prepared for use in studies of thermal stability: R. B. Prime, G. Y. Chiou, R. J. Twieg, “Evaluation of the thermal stability of some nonlinear optical chromophores,” J. Therm. Anal. 46, 1133–1150 (1996); R. J. Twieg, C. W. Dirk, “Design, properties and applications of nonlinear optical chromophores,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar, J. D. Swalen, eds. (Gordon & Breach, Newark, N.J., 1996).

Dalton, L.

D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Diemeer, M.

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Fetterman, H.

D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Flipse, M.

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Galvan-Gonzales, A.

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Hagan, D.

G. Stegeman, D. Hagan, L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

Hay, A. S.

N. Berard, M. Paventi, K. P. Chan, A. S. Hay, “Polymers from 4-(4-hydroxyphenyl)phthalazin-1-one,” Makromol. Chem. Macromol. Symp. 77, 379–388 (1994).

Ishigure, Y. T.

Y. Koike, Y. T. Ishigure, T. M. Satoh, E. Nihei, “High-speed photonics polymer and its application,” Pure Appl. Opt. 7, 201–210 (1998).
[CrossRef]

Jäger, M.

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Jain, A.

R. Jeng, Y. Chen, A. Jain, J. Kumar, S. Tripathy, “Stable second-order nonlinear optical polyimide/inorganic composite,” Chem. Mater. 4, 1141–1144 (1992).
[CrossRef]

Jeng, R.

R. Jeng, Y. Chen, A. Jain, J. Kumar, S. Tripathy, “Stable second-order nonlinear optical polyimide/inorganic composite,” Chem. Mater. 4, 1141–1144 (1992).
[CrossRef]

Jungbauer, D.

D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[CrossRef]

Koike, Y.

Y. Koike, Y. T. Ishigure, T. M. Satoh, E. Nihei, “High-speed photonics polymer and its application,” Pure Appl. Opt. 7, 201–210 (1998).
[CrossRef]

Kowalczyk, T.

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Kumar, J.

R. Jeng, Y. Chen, A. Jain, J. Kumar, S. Tripathy, “Stable second-order nonlinear optical polyimide/inorganic composite,” Chem. Mater. 4, 1141–1144 (1992).
[CrossRef]

Kuzyk, M.

Lackritz, H.

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Marder, S.

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Nihei, E.

Y. Koike, Y. T. Ishigure, T. M. Satoh, E. Nihei, “High-speed photonics polymer and its application,” Pure Appl. Opt. 7, 201–210 (1998).
[CrossRef]

Otomo, A.

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Oudar, J.

J. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–456 (1977).
[CrossRef]

Paventi, M.

N. Berard, M. Paventi, K. P. Chan, A. S. Hay, “Polymers from 4-(4-hydroxyphenyl)phthalazin-1-one,” Makromol. Chem. Macromol. Symp. 77, 379–388 (1994).

Prime, R. B.

The guest chromophores were all prepared and characterized by standard methods. Many of these chromophores were originally prepared for use in studies of thermal stability: R. B. Prime, G. Y. Chiou, R. J. Twieg, “Evaluation of the thermal stability of some nonlinear optical chromophores,” J. Therm. Anal. 46, 1133–1150 (1996); R. J. Twieg, C. W. Dirk, “Design, properties and applications of nonlinear optical chromophores,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar, J. D. Swalen, eds. (Gordon & Breach, Newark, N.J., 1996).

Reck, B.

D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[CrossRef]

Satoh, T. M.

Y. Koike, Y. T. Ishigure, T. M. Satoh, E. Nihei, “High-speed photonics polymer and its application,” Pure Appl. Opt. 7, 201–210 (1998).
[CrossRef]

Shi, Y.

D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Singer, K.

Söhn, J.

Stegeman, G.

Q. Zhang, M. Canva, G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

G. Stegeman, D. Hagan, L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Steier, W.

D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Swalen, J.

D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[CrossRef]

Teraoka, I.

D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[CrossRef]

Thayumanavan, S.

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Torner, L.

G. Stegeman, D. Hagan, L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

Tripathy, S.

R. Jeng, Y. Chen, A. Jain, J. Kumar, S. Tripathy, “Stable second-order nonlinear optical polyimide/inorganic composite,” Chem. Mater. 4, 1141–1144 (1992).
[CrossRef]

Twieg, R.

D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[CrossRef]

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Twieg, R. J.

The guest chromophores were all prepared and characterized by standard methods. Many of these chromophores were originally prepared for use in studies of thermal stability: R. B. Prime, G. Y. Chiou, R. J. Twieg, “Evaluation of the thermal stability of some nonlinear optical chromophores,” J. Therm. Anal. 46, 1133–1150 (1996); R. J. Twieg, C. W. Dirk, “Design, properties and applications of nonlinear optical chromophores,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar, J. D. Swalen, eds. (Gordon & Breach, Newark, N.J., 1996).

Wang, W.

D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Willson, C.

D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[CrossRef]

Yoon, D.

D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[CrossRef]

Zhang, Q.

Q. Zhang, M. Canva, G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

Zhang, X.

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Appl. Phys. Lett.

D. Chen, H. Fetterman, A. Chen, W. Steier, L. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Q. Zhang, M. Canva, G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

Chem. Mater.

R. Jeng, Y. Chen, A. Jain, J. Kumar, S. Tripathy, “Stable second-order nonlinear optical polyimide/inorganic composite,” Chem. Mater. 4, 1141–1144 (1992).
[CrossRef]

J. Appl. Phys.

D. Jungbauer, I. Teraoka, D. Yoon, B. Reck, J. Swalen, R. Twieg, C. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[CrossRef]

J. Chem. Phys.

J. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–456 (1977).
[CrossRef]

J. Opt. Soc. Am. B

J. Therm. Anal.

The guest chromophores were all prepared and characterized by standard methods. Many of these chromophores were originally prepared for use in studies of thermal stability: R. B. Prime, G. Y. Chiou, R. J. Twieg, “Evaluation of the thermal stability of some nonlinear optical chromophores,” J. Therm. Anal. 46, 1133–1150 (1996); R. J. Twieg, C. W. Dirk, “Design, properties and applications of nonlinear optical chromophores,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar, J. D. Swalen, eds. (Gordon & Breach, Newark, N.J., 1996).

Makromol. Chem. Macromol. Symp.

N. Berard, M. Paventi, K. P. Chan, A. S. Hay, “Polymers from 4-(4-hydroxyphenyl)phthalazin-1-one,” Makromol. Chem. Macromol. Symp. 77, 379–388 (1994).

Opt. Quantum Electron.

G. Stegeman, D. Hagan, L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

Pure Appl. Opt.

Y. Koike, Y. T. Ishigure, T. M. Satoh, E. Nihei, “High-speed photonics polymer and its application,” Pure Appl. Opt. 7, 201–210 (1998).
[CrossRef]

Other

As in the Proceedings of the Plastic Optical Fibers International Conference, San Jose28–30 June 99, www.pofig.com POF Interest Group.

As reviewed in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa, S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1996), and references therein.

A. Galvan-Gonzales, M. Canva, G. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. Kowalczyk, X. Zhang, H. Lackritz, “Systematics of the wavelength dependence of electro-optic chromophore photostability,” Opt. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DANS SCP 1 absorption spectrum derived from thin-film transmission in the visible and waveguide propagation losses in the infrared, fitted to a Voigt profile.6 Note that in this representation the linear behavior of the near-infrared tail of the absorption is valid over a spectral range of several hundreds of nanometers and several orders of magnitude in absorption values.

Fig. 2
Fig. 2

Absorption spectra of 2-µm-thick DANS SCP 1 and DR1 SCP 2 films, plotted on both a linear (inset) and a log scale. The weight concentration of active DANS and DR1 chromophore content is 43% and 24% of all the polymers, respectively. The straight lines are extrapolations of the absorption curves in the near-infrared region. Propagation loss measurements taken with 2-µm-thick planar waveguides at 780 nm are also plotted. A 0.5-µm-thick DANS SCP 1 sample was used to avoid saturation of the absorption coefficient in the linear representation.

Fig. 3
Fig. 3

Chemical structures of the guest chromophores used in this study.

Fig. 4
Fig. 4

Chemical structures of the host polymers used in this study.

Fig. 5
Fig. 5

Effect of environment on the near-infrared absorption tail for a variety of chromophores. (a) Comparison of the absorption coefficient extrapolated to 775 nm in solution (solvent, ethyl acetate) and a polymer matrix (PMMA). All the data are normalized to a 10-wt. % concentration. (b) Correlation between the slope in the absorption tail in ethyl acetate and in PMMA.

Fig. 6
Fig. 6

Absorption spectra in ethyl acetate and propagation loss in a PMMA matrix of the chromophores 5, 13, 19, and 20. All the data are normalized to a 10-wt. % concentration. The extrapolated values and the propagation measurements at 775 nm are in good agreement with the chromophores 5 and 19.

Fig. 7
Fig. 7

Absorption spectra of chromophore 5 in different organic polymer matrices and in ethyl acetate solution along with the straight-line extrapolation toward the infrared. Note the different slopes of these extrapolations and the different values they suggest for the absorption in the near infrared, for example, at 775 nm.

Fig. 8
Fig. 8

Effect of the glass transition temperature T g on extrapolated values of the absorption at 775 nm and on the slope for the three different chromophores 4, 5, and 13. Chromophore aggregation prevented us from reporting the values for both 4 and 13 in polystyrene. (a) Extrapolated values of the absorption at 775 nm as a function of matrix T g (straight lines are guides for the eye). The losses increase by more than an order of magnitude as T g varies from approximately 100 °C to 300 °C. The identities of the different polymers are listed in Table 2. (b) Values of the slope in the near-infrared tail of chromophore absorption as a function of matrix T g . Note the following correlation: the larger the T g , the smaller the slope (straight lines are guides for the eye). The identities of the different polymers are listed in Table 2.

Tables (2)

Tables Icon

Table 1 Spectral Position of the Absorption Peak and the Slope in the Near-Infrared Tail of the Absorption Spectrum and Extrapolated Absorption at 775 nm in Two Environmentsa

Tables Icon

Table 2 Glass Transition Temperatures of the Various Polymer Host Matrices

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

slope=dlogαλdλ,

Metrics