Abstract

Micromechanics-based wavelength-sensitive photonic delay and amplitude control modules are introduced for multiwavelength photonic applications such as hardware-compressed beam forming in phased-array antennas, timing-error compensation in high-speed long-haul fiber-optic communication networks, and pulse synchronization in photonic analog-to-digital converters and space–time code division multiplexed decoders. The basic delay structure relies on a single-circulator compact reflective parallel path design that features polarization insensitivity, independently controllable optical time-delay and amplitude settings, and fiber compatibility. Switched fiber time delays are proposed that use various micromechanical mechanisms such as mechanically stretched fiber Bragg gratings with comb-drive translational stages or magnetic levitation-based stretchers. Additional, shorter-duration variable time delays are obtained by means of the translational motion of external mirrors and the inherent delays in the zigzag reflective path geometry of the bulk-optic thin-film interference filter-based wavelength multiplexer used in our proposed design. Experiments are performed to test these concepts.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).
  2. S. L. Danielsen, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on performance,” J. Lightwave Technol. 15, 219–227 (1997).
    [CrossRef]
  3. L. Bergman, J. Morookian, C. Yeh, “An all-optical long-distance multi-Gbytes/s bit-parallel WDM single-fiber link,” J. Lightwave Technol. 16, 1577–1582 (1998).
    [CrossRef]
  4. J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
    [CrossRef]
  5. A. S. Bhushan, F. Coppinger, B. Jalali, S. Wang, H. F. Fetterman, “150 Gsample/s wavelength division sampler with time-stretched output,” Electron. Lett. 34, 474–475 (1998).
    [CrossRef]
  6. J. P. Gordon, H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
    [CrossRef] [PubMed]
  7. Y. Kodama, A. Hasegawa, “Generation of asymptotically stable optical solitons and suppression of the Gordon–Haus effect,” Opt. Lett. 17, 31–33 (1992).
    [CrossRef] [PubMed]
  8. L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, “The sliding-frequency guiding filter: an improved form of soliton jitter control,” Opt. Lett. 17, 1575–1577 (1992).
    [CrossRef] [PubMed]
  9. C. Yeh, L. Bergman, J. Morookian, S. Monacos, “Generation of time-aligned picosecond pulses on wavelength-division-multiplexed beams in a nonlinear fiber,” Phys. Rev. E 7, 6135–6139 (1998).
    [CrossRef]
  10. J. Spring, R. S. Tucker, “Photonic 2 × 2 packet switch with input buffers,” Electron. Lett. 29, 284–285 (1993).
    [CrossRef]
  11. W. D. Zhong, R. S. Tucker, “Wavelength routing–based photonic packet buffers and their applications in photonic packet switching systems,” J. Lightwave Technol. 16, 1737–1744 (1998).
    [CrossRef]
  12. Z. Haas, “The staggering switch: an electronically controlled optical packet switch,” J. Lightwave Technol. 11, 925–936 (1993).
    [CrossRef]
  13. R. Khosravani, M. I. Hayee, B. Hoanca, A. R. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photon. Technol. Lett. 11, 134–136 (1999).
    [CrossRef]
  14. N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994).
    [CrossRef]
  15. N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal–based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
    [CrossRef]
  16. N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145, 15–20 (1998).
    [CrossRef]
  17. E. Ackerman, S. Wanuga, D. Kasemset, “Integrated 6-bit photonic true-time-delay unit for lightweight 3-6 GHz radar beamformer,” in IEEE International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 1992), Part 2, pp. 681–684.
  18. S. C. Barden, Fiber Optics in Astronomical Applications, Proc. SPIE2476, (1995).
    [CrossRef]
  19. N. A. Riza, “Advanced novel photonic instrumentation for adaptive and interferometric astronomy,” in Space Telescopes and Instruments IV, P. V. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 335–341 (1996).
    [CrossRef]
  20. M. Colavita, “Interferometry at Keck telescopes creates powerful array,” (SPIE, Bellingham, Wash., March1998).
  21. N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant polarization insensitive photonic delay line architecture using two dimensional digital micromirror devices,” Opt. Commun. 160, 311–320 (1999).
    [CrossRef]
  22. N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant dense multiwavelength add-drop filter with a two dimensional digital micromirror device,” Appl. Opt. 37, 6355–6361 (1998).
    [CrossRef]
  23. N. A. Riza, S. Sumriddetchkajorn, “Two dimensional digital micromirror device-based 2 × 2 fiber-optic switch array,” in IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 413–414.
  24. N. A. Riza, S. Sumriddetchkajorn, “Digitally controlled fault tolerant multiwavelength programmable fiber-optic attenuator using a two dimensional digital micromirror device,” Opt. Lett. 24, 282–284 (1999).
    [CrossRef]
  25. D. Sadot, E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 39(12), 50–55 (1998).
    [CrossRef]
  26. B. Broberg, P. J. Rigole, S. Nilson, M. Renlund, L. Andersson, “Widely tunable semiconductor lasers,” in IEEE LEOS Annual Meeting, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 151–152.
  27. N. A. Riza, J. E. Hershey, A. A. Hassan, “A novel multi-dimensional coding scheme for multi-access optical communications,” in Multigigabit Fiber Communications, L. G. Kazovsky, K. Liu eds., Proc. SPIE1787, 110–120 (1992).
    [CrossRef]
  28. N. A. Riza, J. E. Hershey, A. A. Hassan, “Signaling system for multiple-access laser communications and interference protection,” Appl. Opt. 32, 1965–1972 (1993).
    [CrossRef] [PubMed]
  29. N. A. Riza, J. E. Hershey, A. A. Hassan, “Optical communication system using coplanar light modulators,” U. S. patent5,410,147 (25April1995).
  30. C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.
  31. L. J. Hornbeck, “Digital light processing and MEMS: reflecting the digital display needs of the networked society,” in Micro-optical Technologies for Measurement, Sensors, and Microsystems, O. M. Parriaux, ed., Proc. SPIE2783, 2–13 (1996).
    [CrossRef]
  32. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995), Chap. 3.
  33. Technical data sheet for the optical circulator (Kaifa Technology, Inc., 388 Oakmead Parkway, Sunnyvale, Calif., 1998).
  34. Technical data sheet for the four-channel WDM multiplexer (Corning OCA Corporation, 111 Locke Dr., Marlborough, Mass., 1998).
  35. Product catalog for the 132-channel Stimax WDM (ISA Jobin–Yvon Horiba Group, 3880 Park Ave., Edison, N.J., 1998).
  36. K. Okamoto, K. Syuto, H. Takahashi, Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25GHz channel spacing,” Electron. Lett. 32, 474–475 (1996).
    [CrossRef]
  37. Z. J. Sun, K. A. McGreer, J. N. Broughton, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett. 10, 90–92 (1998).
    [CrossRef]
  38. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
    [CrossRef]
  39. Product catalog (Bragg Photonics, Inc., Montreal, Quebec, Canada, 1996).
  40. G. A. Ball, W. W. Morey, “Compression-tuned single-frequency Bragg grating fiber laser,” Opt. Lett. 19, 1979–1981 (1994).
    [CrossRef] [PubMed]
  41. L. S. Fan, Y. C. Tai, R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Electron. Dev. ED-35, 724–730 (1988).
    [CrossRef]
  42. E. R. Laithwaite, Transport without Wheels (Elek Science, London, 1977).
  43. J. R. Powell, G. T. Danby, “Maglav vehicles: raising transportation advances off the ground,” IEEE Potentials 15(4), 7–12 (1996).
    [CrossRef]
  44. A. Desai, S. W. Lee, Y. C. Tai, “A MEMS electrostatic particle transportation system,” in Conference Proceedings of the IEEE Micro Electro Mechanical Systems Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 121–126.
  45. Y.-K. Kim, M. Katsurai, H. Fujita, “Levitation-type synchronous microactuator using the Meissner effect of high-Tc superconductors,” Sensors Actuators A 29, 143–150 (1991).
    [CrossRef]
  46. Product data 915 (Canadian Instrumentation and Research, Ltd., 115 Appleby Line Unit E8, Burlington, Ontario, Canada, 1998).
  47. BellCore TR-NWT-001073, “Generic requirements for fiber optic switches,” Issue 1 (Bellcore, Morristown, N.J., 1January1994).

1999

R. Khosravani, M. I. Hayee, B. Hoanca, A. R. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photon. Technol. Lett. 11, 134–136 (1999).
[CrossRef]

N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant polarization insensitive photonic delay line architecture using two dimensional digital micromirror devices,” Opt. Commun. 160, 311–320 (1999).
[CrossRef]

N. A. Riza, S. Sumriddetchkajorn, “Digitally controlled fault tolerant multiwavelength programmable fiber-optic attenuator using a two dimensional digital micromirror device,” Opt. Lett. 24, 282–284 (1999).
[CrossRef]

1998

N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant dense multiwavelength add-drop filter with a two dimensional digital micromirror device,” Appl. Opt. 37, 6355–6361 (1998).
[CrossRef]

L. Bergman, J. Morookian, C. Yeh, “An all-optical long-distance multi-Gbytes/s bit-parallel WDM single-fiber link,” J. Lightwave Technol. 16, 1577–1582 (1998).
[CrossRef]

W. D. Zhong, R. S. Tucker, “Wavelength routing–based photonic packet buffers and their applications in photonic packet switching systems,” J. Lightwave Technol. 16, 1737–1744 (1998).
[CrossRef]

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145, 15–20 (1998).
[CrossRef]

Z. J. Sun, K. A. McGreer, J. N. Broughton, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett. 10, 90–92 (1998).
[CrossRef]

D. Sadot, E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 39(12), 50–55 (1998).
[CrossRef]

A. S. Bhushan, F. Coppinger, B. Jalali, S. Wang, H. F. Fetterman, “150 Gsample/s wavelength division sampler with time-stretched output,” Electron. Lett. 34, 474–475 (1998).
[CrossRef]

C. Yeh, L. Bergman, J. Morookian, S. Monacos, “Generation of time-aligned picosecond pulses on wavelength-division-multiplexed beams in a nonlinear fiber,” Phys. Rev. E 7, 6135–6139 (1998).
[CrossRef]

1997

S. L. Danielsen, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on performance,” J. Lightwave Technol. 15, 219–227 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal–based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

1996

K. Okamoto, K. Syuto, H. Takahashi, Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25GHz channel spacing,” Electron. Lett. 32, 474–475 (1996).
[CrossRef]

J. R. Powell, G. T. Danby, “Maglav vehicles: raising transportation advances off the ground,” IEEE Potentials 15(4), 7–12 (1996).
[CrossRef]

1995

J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
[CrossRef]

1994

N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994).
[CrossRef]

G. A. Ball, W. W. Morey, “Compression-tuned single-frequency Bragg grating fiber laser,” Opt. Lett. 19, 1979–1981 (1994).
[CrossRef] [PubMed]

1993

N. A. Riza, J. E. Hershey, A. A. Hassan, “Signaling system for multiple-access laser communications and interference protection,” Appl. Opt. 32, 1965–1972 (1993).
[CrossRef] [PubMed]

J. Spring, R. S. Tucker, “Photonic 2 × 2 packet switch with input buffers,” Electron. Lett. 29, 284–285 (1993).
[CrossRef]

Z. Haas, “The staggering switch: an electronically controlled optical packet switch,” J. Lightwave Technol. 11, 925–936 (1993).
[CrossRef]

1992

1991

Y.-K. Kim, M. Katsurai, H. Fujita, “Levitation-type synchronous microactuator using the Meissner effect of high-Tc superconductors,” Sensors Actuators A 29, 143–150 (1991).
[CrossRef]

1988

L. S. Fan, Y. C. Tai, R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Electron. Dev. ED-35, 724–730 (1988).
[CrossRef]

1986

Ackerman, E.

E. Ackerman, S. Wanuga, D. Kasemset, “Integrated 6-bit photonic true-time-delay unit for lightweight 3-6 GHz radar beamformer,” in IEEE International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 1992), Part 2, pp. 681–684.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).

Andersson, L.

B. Broberg, P. J. Rigole, S. Nilson, M. Renlund, L. Andersson, “Widely tunable semiconductor lasers,” in IEEE LEOS Annual Meeting, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 151–152.

Ball, G. A.

Barden, S. C.

S. C. Barden, Fiber Optics in Astronomical Applications, Proc. SPIE2476, (1995).
[CrossRef]

Bergman, L.

L. Bergman, J. Morookian, C. Yeh, “An all-optical long-distance multi-Gbytes/s bit-parallel WDM single-fiber link,” J. Lightwave Technol. 16, 1577–1582 (1998).
[CrossRef]

C. Yeh, L. Bergman, J. Morookian, S. Monacos, “Generation of time-aligned picosecond pulses on wavelength-division-multiplexed beams in a nonlinear fiber,” Phys. Rev. E 7, 6135–6139 (1998).
[CrossRef]

Bhushan, A. S.

A. S. Bhushan, F. Coppinger, B. Jalali, S. Wang, H. F. Fetterman, “150 Gsample/s wavelength division sampler with time-stretched output,” Electron. Lett. 34, 474–475 (1998).
[CrossRef]

Boimovich, E.

D. Sadot, E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 39(12), 50–55 (1998).
[CrossRef]

Broberg, B.

B. Broberg, P. J. Rigole, S. Nilson, M. Renlund, L. Andersson, “Widely tunable semiconductor lasers,” in IEEE LEOS Annual Meeting, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 151–152.

Broughton, J. N.

Z. J. Sun, K. A. McGreer, J. N. Broughton, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett. 10, 90–92 (1998).
[CrossRef]

Colavita, M.

M. Colavita, “Interferometry at Keck telescopes creates powerful array,” (SPIE, Bellingham, Wash., March1998).

Coppinger, F.

A. S. Bhushan, F. Coppinger, B. Jalali, S. Wang, H. F. Fetterman, “150 Gsample/s wavelength division sampler with time-stretched output,” Electron. Lett. 34, 474–475 (1998).
[CrossRef]

Danby, G. T.

J. R. Powell, G. T. Danby, “Maglav vehicles: raising transportation advances off the ground,” IEEE Potentials 15(4), 7–12 (1996).
[CrossRef]

Danielsen, S. L.

S. L. Danielsen, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on performance,” J. Lightwave Technol. 15, 219–227 (1997).
[CrossRef]

Desai, A.

A. Desai, S. W. Lee, Y. C. Tai, “A MEMS electrostatic particle transportation system,” in Conference Proceedings of the IEEE Micro Electro Mechanical Systems Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 121–126.

Ebeling, K. J.

C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.

Eberhard, F.

C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.

Evangelides, S. G.

Fan, L. S.

L. S. Fan, Y. C. Tai, R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Electron. Dev. ED-35, 724–730 (1988).
[CrossRef]

Fetterman, H. F.

A. S. Bhushan, F. Coppinger, B. Jalali, S. Wang, H. F. Fetterman, “150 Gsample/s wavelength division sampler with time-stretched output,” Electron. Lett. 34, 474–475 (1998).
[CrossRef]

Fujita, H.

Y.-K. Kim, M. Katsurai, H. Fujita, “Levitation-type synchronous microactuator using the Meissner effect of high-Tc superconductors,” Sensors Actuators A 29, 143–150 (1991).
[CrossRef]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

Gordon, J. P.

Grabherr, M.

C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.

Haas, Z.

Z. Haas, “The staggering switch: an electronically controlled optical packet switch,” J. Lightwave Technol. 11, 925–936 (1993).
[CrossRef]

Hall, K. L.

J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
[CrossRef]

Hasegawa, A.

Hassan, A. A.

N. A. Riza, J. E. Hershey, A. A. Hassan, “Signaling system for multiple-access laser communications and interference protection,” Appl. Opt. 32, 1965–1972 (1993).
[CrossRef] [PubMed]

N. A. Riza, J. E. Hershey, A. A. Hassan, “A novel multi-dimensional coding scheme for multi-access optical communications,” in Multigigabit Fiber Communications, L. G. Kazovsky, K. Liu eds., Proc. SPIE1787, 110–120 (1992).
[CrossRef]

N. A. Riza, J. E. Hershey, A. A. Hassan, “Optical communication system using coplanar light modulators,” U. S. patent5,410,147 (25April1995).

Haus, H. A.

J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
[CrossRef]

J. P. Gordon, H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
[CrossRef] [PubMed]

Hayee, M. I.

R. Khosravani, M. I. Hayee, B. Hoanca, A. R. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photon. Technol. Lett. 11, 134–136 (1999).
[CrossRef]

Hershey, J. E.

N. A. Riza, J. E. Hershey, A. A. Hassan, “Signaling system for multiple-access laser communications and interference protection,” Appl. Opt. 32, 1965–1972 (1993).
[CrossRef] [PubMed]

N. A. Riza, J. E. Hershey, A. A. Hassan, “A novel multi-dimensional coding scheme for multi-access optical communications,” in Multigigabit Fiber Communications, L. G. Kazovsky, K. Liu eds., Proc. SPIE1787, 110–120 (1992).
[CrossRef]

N. A. Riza, J. E. Hershey, A. A. Hassan, “Optical communication system using coplanar light modulators,” U. S. patent5,410,147 (25April1995).

Hoanca, B.

R. Khosravani, M. I. Hayee, B. Hoanca, A. R. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photon. Technol. Lett. 11, 134–136 (1999).
[CrossRef]

Hornbeck, L. J.

L. J. Hornbeck, “Digital light processing and MEMS: reflecting the digital display needs of the networked society,” in Micro-optical Technologies for Measurement, Sensors, and Microsystems, O. M. Parriaux, ed., Proc. SPIE2783, 2–13 (1996).
[CrossRef]

Ippen, E. P.

J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
[CrossRef]

Jäger, R.

C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.

Jalali, B.

A. S. Bhushan, F. Coppinger, B. Jalali, S. Wang, H. F. Fetterman, “150 Gsample/s wavelength division sampler with time-stretched output,” Electron. Lett. 34, 474–475 (1998).
[CrossRef]

Jung, C.

C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.

Kasemset, D.

E. Ackerman, S. Wanuga, D. Kasemset, “Integrated 6-bit photonic true-time-delay unit for lightweight 3-6 GHz radar beamformer,” in IEEE International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 1992), Part 2, pp. 681–684.

Katsurai, M.

Y.-K. Kim, M. Katsurai, H. Fujita, “Levitation-type synchronous microactuator using the Meissner effect of high-Tc superconductors,” Sensors Actuators A 29, 143–150 (1991).
[CrossRef]

Khosravani, R.

R. Khosravani, M. I. Hayee, B. Hoanca, A. R. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photon. Technol. Lett. 11, 134–136 (1999).
[CrossRef]

Kim, Y.-K.

Y.-K. Kim, M. Katsurai, H. Fujita, “Levitation-type synchronous microactuator using the Meissner effect of high-Tc superconductors,” Sensors Actuators A 29, 143–150 (1991).
[CrossRef]

King, R.

C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.

Kodama, Y.

Laithwaite, E. R.

E. R. Laithwaite, Transport without Wheels (Elek Science, London, 1977).

Lee, S. W.

A. Desai, S. W. Lee, Y. C. Tai, “A MEMS electrostatic particle transportation system,” in Conference Proceedings of the IEEE Micro Electro Mechanical Systems Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 121–126.

Lepage, S. M.

J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
[CrossRef]

Madamopoulos, N.

N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal–based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

McGreer, K. A.

Z. J. Sun, K. A. McGreer, J. N. Broughton, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett. 10, 90–92 (1998).
[CrossRef]

Michalzik, R.

C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.

Mollenauer, L. F.

Monacos, S.

C. Yeh, L. Bergman, J. Morookian, S. Monacos, “Generation of time-aligned picosecond pulses on wavelength-division-multiplexed beams in a nonlinear fiber,” Phys. Rev. E 7, 6135–6139 (1998).
[CrossRef]

Moores, J. D.

J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
[CrossRef]

Morey, W. W.

Morookian, J.

L. Bergman, J. Morookian, C. Yeh, “An all-optical long-distance multi-Gbytes/s bit-parallel WDM single-fiber link,” J. Lightwave Technol. 16, 1577–1582 (1998).
[CrossRef]

C. Yeh, L. Bergman, J. Morookian, S. Monacos, “Generation of time-aligned picosecond pulses on wavelength-division-multiplexed beams in a nonlinear fiber,” Phys. Rev. E 7, 6135–6139 (1998).
[CrossRef]

Muller, R. S.

L. S. Fan, Y. C. Tai, R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Electron. Dev. ED-35, 724–730 (1988).
[CrossRef]

Nilson, S.

B. Broberg, P. J. Rigole, S. Nilson, M. Renlund, L. Andersson, “Widely tunable semiconductor lasers,” in IEEE LEOS Annual Meeting, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 151–152.

Ohmori, Y.

K. Okamoto, K. Syuto, H. Takahashi, Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25GHz channel spacing,” Electron. Lett. 32, 474–475 (1996).
[CrossRef]

Okamoto, K.

K. Okamoto, K. Syuto, H. Takahashi, Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25GHz channel spacing,” Electron. Lett. 32, 474–475 (1996).
[CrossRef]

Powell, J. R.

J. R. Powell, G. T. Danby, “Maglav vehicles: raising transportation advances off the ground,” IEEE Potentials 15(4), 7–12 (1996).
[CrossRef]

Rauschenbach, K. A.

J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
[CrossRef]

Renlund, M.

B. Broberg, P. J. Rigole, S. Nilson, M. Renlund, L. Andersson, “Widely tunable semiconductor lasers,” in IEEE LEOS Annual Meeting, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 151–152.

Rigole, P. J.

B. Broberg, P. J. Rigole, S. Nilson, M. Renlund, L. Andersson, “Widely tunable semiconductor lasers,” in IEEE LEOS Annual Meeting, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 151–152.

Riza, N. A.

N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant polarization insensitive photonic delay line architecture using two dimensional digital micromirror devices,” Opt. Commun. 160, 311–320 (1999).
[CrossRef]

N. A. Riza, S. Sumriddetchkajorn, “Digitally controlled fault tolerant multiwavelength programmable fiber-optic attenuator using a two dimensional digital micromirror device,” Opt. Lett. 24, 282–284 (1999).
[CrossRef]

N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant dense multiwavelength add-drop filter with a two dimensional digital micromirror device,” Appl. Opt. 37, 6355–6361 (1998).
[CrossRef]

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145, 15–20 (1998).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal–based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994).
[CrossRef]

N. A. Riza, J. E. Hershey, A. A. Hassan, “Signaling system for multiple-access laser communications and interference protection,” Appl. Opt. 32, 1965–1972 (1993).
[CrossRef] [PubMed]

N. A. Riza, J. E. Hershey, A. A. Hassan, “A novel multi-dimensional coding scheme for multi-access optical communications,” in Multigigabit Fiber Communications, L. G. Kazovsky, K. Liu eds., Proc. SPIE1787, 110–120 (1992).
[CrossRef]

N. A. Riza, S. Sumriddetchkajorn, “Two dimensional digital micromirror device-based 2 × 2 fiber-optic switch array,” in IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 413–414.

N. A. Riza, “Advanced novel photonic instrumentation for adaptive and interferometric astronomy,” in Space Telescopes and Instruments IV, P. V. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 335–341 (1996).
[CrossRef]

N. A. Riza, J. E. Hershey, A. A. Hassan, “Optical communication system using coplanar light modulators,” U. S. patent5,410,147 (25April1995).

Sadot, D.

D. Sadot, E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 39(12), 50–55 (1998).
[CrossRef]

Spring, J.

J. Spring, R. S. Tucker, “Photonic 2 × 2 packet switch with input buffers,” Electron. Lett. 29, 284–285 (1993).
[CrossRef]

Sumriddetchkajorn, S.

N. A. Riza, S. Sumriddetchkajorn, “Digitally controlled fault tolerant multiwavelength programmable fiber-optic attenuator using a two dimensional digital micromirror device,” Opt. Lett. 24, 282–284 (1999).
[CrossRef]

N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant polarization insensitive photonic delay line architecture using two dimensional digital micromirror devices,” Opt. Commun. 160, 311–320 (1999).
[CrossRef]

N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant dense multiwavelength add-drop filter with a two dimensional digital micromirror device,” Appl. Opt. 37, 6355–6361 (1998).
[CrossRef]

N. A. Riza, S. Sumriddetchkajorn, “Two dimensional digital micromirror device-based 2 × 2 fiber-optic switch array,” in IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 413–414.

Sun, Z. J.

Z. J. Sun, K. A. McGreer, J. N. Broughton, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett. 10, 90–92 (1998).
[CrossRef]

Syuto, K.

K. Okamoto, K. Syuto, H. Takahashi, Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25GHz channel spacing,” Electron. Lett. 32, 474–475 (1996).
[CrossRef]

Tai, Y. C.

L. S. Fan, Y. C. Tai, R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Electron. Dev. ED-35, 724–730 (1988).
[CrossRef]

A. Desai, S. W. Lee, Y. C. Tai, “A MEMS electrostatic particle transportation system,” in Conference Proceedings of the IEEE Micro Electro Mechanical Systems Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 121–126.

Takahashi, H.

K. Okamoto, K. Syuto, H. Takahashi, Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25GHz channel spacing,” Electron. Lett. 32, 474–475 (1996).
[CrossRef]

Tucker, R. S.

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995), Chap. 3.

Wang, S.

A. S. Bhushan, F. Coppinger, B. Jalali, S. Wang, H. F. Fetterman, “150 Gsample/s wavelength division sampler with time-stretched output,” Electron. Lett. 34, 474–475 (1998).
[CrossRef]

Wanuga, S.

E. Ackerman, S. Wanuga, D. Kasemset, “Integrated 6-bit photonic true-time-delay unit for lightweight 3-6 GHz radar beamformer,” in IEEE International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 1992), Part 2, pp. 681–684.

Willner, A. R.

R. Khosravani, M. I. Hayee, B. Hoanca, A. R. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photon. Technol. Lett. 11, 134–136 (1999).
[CrossRef]

Wong, W. S.

J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
[CrossRef]

Yeh, C.

L. Bergman, J. Morookian, C. Yeh, “An all-optical long-distance multi-Gbytes/s bit-parallel WDM single-fiber link,” J. Lightwave Technol. 16, 1577–1582 (1998).
[CrossRef]

C. Yeh, L. Bergman, J. Morookian, S. Monacos, “Generation of time-aligned picosecond pulses on wavelength-division-multiplexed beams in a nonlinear fiber,” Phys. Rev. E 7, 6135–6139 (1998).
[CrossRef]

Zhong, W. D.

Appl. Opt.

Electron. Lett.

A. S. Bhushan, F. Coppinger, B. Jalali, S. Wang, H. F. Fetterman, “150 Gsample/s wavelength division sampler with time-stretched output,” Electron. Lett. 34, 474–475 (1998).
[CrossRef]

K. Okamoto, K. Syuto, H. Takahashi, Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25GHz channel spacing,” Electron. Lett. 32, 474–475 (1996).
[CrossRef]

J. Spring, R. S. Tucker, “Photonic 2 × 2 packet switch with input buffers,” Electron. Lett. 29, 284–285 (1993).
[CrossRef]

IEEE Commun. Mag.

D. Sadot, E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 39(12), 50–55 (1998).
[CrossRef]

IEEE Electron. Dev.

L. S. Fan, Y. C. Tai, R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Electron. Dev. ED-35, 724–730 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. J. Sun, K. A. McGreer, J. N. Broughton, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett. 10, 90–92 (1998).
[CrossRef]

R. Khosravani, M. I. Hayee, B. Hoanca, A. R. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photon. Technol. Lett. 11, 134–136 (1999).
[CrossRef]

J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
[CrossRef]

IEEE Potentials

J. R. Powell, G. T. Danby, “Maglav vehicles: raising transportation advances off the ground,” IEEE Potentials 15(4), 7–12 (1996).
[CrossRef]

J. Lightwave Technol.

Z. Haas, “The staggering switch: an electronically controlled optical packet switch,” J. Lightwave Technol. 11, 925–936 (1993).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

S. L. Danielsen, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on performance,” J. Lightwave Technol. 15, 219–227 (1997).
[CrossRef]

N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal–based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

L. Bergman, J. Morookian, C. Yeh, “An all-optical long-distance multi-Gbytes/s bit-parallel WDM single-fiber link,” J. Lightwave Technol. 16, 1577–1582 (1998).
[CrossRef]

W. D. Zhong, R. S. Tucker, “Wavelength routing–based photonic packet buffers and their applications in photonic packet switching systems,” J. Lightwave Technol. 16, 1737–1744 (1998).
[CrossRef]

Opt. Commun.

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145, 15–20 (1998).
[CrossRef]

N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant polarization insensitive photonic delay line architecture using two dimensional digital micromirror devices,” Opt. Commun. 160, 311–320 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev. E

C. Yeh, L. Bergman, J. Morookian, S. Monacos, “Generation of time-aligned picosecond pulses on wavelength-division-multiplexed beams in a nonlinear fiber,” Phys. Rev. E 7, 6135–6139 (1998).
[CrossRef]

Sensors Actuators A

Y.-K. Kim, M. Katsurai, H. Fujita, “Levitation-type synchronous microactuator using the Meissner effect of high-Tc superconductors,” Sensors Actuators A 29, 143–150 (1991).
[CrossRef]

Other

Product data 915 (Canadian Instrumentation and Research, Ltd., 115 Appleby Line Unit E8, Burlington, Ontario, Canada, 1998).

BellCore TR-NWT-001073, “Generic requirements for fiber optic switches,” Issue 1 (Bellcore, Morristown, N.J., 1January1994).

N. A. Riza, S. Sumriddetchkajorn, “Two dimensional digital micromirror device-based 2 × 2 fiber-optic switch array,” in IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 413–414.

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).

Product catalog (Bragg Photonics, Inc., Montreal, Quebec, Canada, 1996).

B. Broberg, P. J. Rigole, S. Nilson, M. Renlund, L. Andersson, “Widely tunable semiconductor lasers,” in IEEE LEOS Annual Meeting, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 151–152.

N. A. Riza, J. E. Hershey, A. A. Hassan, “A novel multi-dimensional coding scheme for multi-access optical communications,” in Multigigabit Fiber Communications, L. G. Kazovsky, K. Liu eds., Proc. SPIE1787, 110–120 (1992).
[CrossRef]

A. Desai, S. W. Lee, Y. C. Tai, “A MEMS electrostatic particle transportation system,” in Conference Proceedings of the IEEE Micro Electro Mechanical Systems Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 121–126.

E. R. Laithwaite, Transport without Wheels (Elek Science, London, 1977).

N. A. Riza, J. E. Hershey, A. A. Hassan, “Optical communication system using coplanar light modulators,” U. S. patent5,410,147 (25April1995).

C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.

L. J. Hornbeck, “Digital light processing and MEMS: reflecting the digital display needs of the networked society,” in Micro-optical Technologies for Measurement, Sensors, and Microsystems, O. M. Parriaux, ed., Proc. SPIE2783, 2–13 (1996).
[CrossRef]

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995), Chap. 3.

Technical data sheet for the optical circulator (Kaifa Technology, Inc., 388 Oakmead Parkway, Sunnyvale, Calif., 1998).

Technical data sheet for the four-channel WDM multiplexer (Corning OCA Corporation, 111 Locke Dr., Marlborough, Mass., 1998).

Product catalog for the 132-channel Stimax WDM (ISA Jobin–Yvon Horiba Group, 3880 Park Ave., Edison, N.J., 1998).

E. Ackerman, S. Wanuga, D. Kasemset, “Integrated 6-bit photonic true-time-delay unit for lightweight 3-6 GHz radar beamformer,” in IEEE International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 1992), Part 2, pp. 681–684.

S. C. Barden, Fiber Optics in Astronomical Applications, Proc. SPIE2476, (1995).
[CrossRef]

N. A. Riza, “Advanced novel photonic instrumentation for adaptive and interferometric astronomy,” in Space Telescopes and Instruments IV, P. V. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 335–341 (1996).
[CrossRef]

M. Colavita, “Interferometry at Keck telescopes creates powerful array,” (SPIE, Bellingham, Wash., March1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(a) Binary cascaded switched structure to form a multiwavelength WPDL, (b) wavelength-sensitive photonic delay line–based antenna transmit array feed configuration, and (c) a similar configuration but for the tunable laser-based antenna transmit array–feed configuration. PD’s, photodetectors.

Fig. 2
Fig. 2

Basic block diagram of a supercomputing architecture that uses high-speed multiwavelength fiber-optically interconnected parallel processors (FIPPs) and the proposed WPDL’s. In this and subsequent figures MUX’s, multiplexers; DEMUX’s, demultiplexers.

Fig. 3
Fig. 3

Basic block diagram of the photonic bit serial-to-parallel word converter that requires our WPDL. LSB, least-significant bit; MSB, most-significant bit.

Fig. 4
Fig. 4

Structure of an optical pulse shaper that uses our WPDL.

Fig. 5
Fig. 5

Structure of a rf transversal filter architecture that exploits our WPDL.

Fig. 6
Fig. 6

Space–time WDM optical CDMA link structure that uses our WPDL module.

Fig. 7
Fig. 7

(a) Retroreflective optical attenuator that uses a small tilt micromirror device. (b) Top view of optical beam paths reflected from the 2D DMD.

Fig. 8
Fig. 8

The four areas used for the 4-bit attenuator demonstration of our fault-tolerant area-modulation technique.

Fig. 9
Fig. 9

Proposed basic WPDL architectures for (a) a short time delay and (b) a longer time delay. (c) Combination of the proper interference filter with external mirror positioning to form the required structure.

Fig. 10
Fig. 10

Proposed tunable WPDL architectures that use (a) the FBG-based serial-parallel approach and (b) the 2-D DMD–based approach.

Fig. 11
Fig. 11

Schematic drawing of our MEMS sliding guides–based FBG compressor chip.

Fig. 12
Fig. 12

Alternative design for the MEMS-based FBG compressor chip that uses the principles of magnetic levitation.

Fig. 13
Fig. 13

Theoretical and measured optical attenuation values versus the 16 different area settings of our experimental 4-bit fiber-optic attenuator that uses a concentric area mapping design.

Fig. 14
Fig. 14

Experimental setup for our broad time-delay range WPDL architecture. SMF, single-mode fibers; FC/APC, fiber connector/angle-polished connector.

Fig. 15
Fig. 15

Measured relative time delays with respect to the shortest time delay obtained from our WPDL experimental setup.

Fig. 16
Fig. 16

Results of our variable WPDL experimental demonstration with a moving mirror: (a) measured time delay versus mirror-offset distance, (b) optical power fluctuation versus mirror-offset distance.

Fig. 17
Fig. 17

rf modulated signals from our moving mirror–based variable WPDL experimental demonstration: (a) measured relative time delay when the mirror offset is 0 (top trace) versus the reference rf signal (bottom trace), (b) measured relative time delay when the mirror offset is 15 mm (top trace) versus the reference rf signal (bottom trace).

Tables (1)

Tables Icon

Table 1 Measured Optical Loss and Optical Signal-to-Noise Ratio for the WPDL Experimental Demonstration

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

A1=πr12,  A2=πr22-r12,  A3=πr32-r22,  A4=πr42-r32,
r2=3r1, r3=7r1, r4=15r1.
Parea=A IdA=12ηA |Er|2dA,  =1/2E02/ηw02/wz2×02πab exp-2r2/wz2rdrdϕ,  Parea=1/4πE02w02/ηexp-2a2/wz2-exp-2b2/wz2,
P1=1/4πE02w02/η1-exp-2r12/wz2,  P2=1/4πE02w02/ηexp-2r12/wz2-exp-2r22/wz2,  P3=1/4πE02w02/ηexp-2r22/wz2-exp-2r32/wz2,  P4=1/4πE02w02/ηexp-2r32/wz2-exp-2r42/wz2,
Ptheory,0=1/4πE02w02/η.
Pexpt,0=1/4πE02w02/η1-exp-d2/2wz2.
P1,norm=1-exp-2r12/wz2/1-exp-d2/2wz2,  P2,norm=exp-2r12/wz2-exp-2r22/wz2/1-exp-d2/2wz2,  P3,norm=exp-2r22/wz2-exp-2r32/wz2/1-exp-d2/2wz2,  P4,norm=exp-2r32/wz2-exp-2r42/wz2/1-exp-d2/2wz2.
normalized attenuation dB =-10 logPn.
Δti=2idn/c,
Ti=2nfLi/c+Δti,
Δtmirror=2d/c,
Δtpiezo=15×10-9m/volt·windingVNw/c,
experimental normalized attenuation dB=-10 logPn+10-Amax/10/1+10-Amax/10.

Metrics