Abstract

Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving radiances in the visible over clear deep ocean areas and cannot easily be modified for retrievals over turbid coastal waters. We have developed an atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses lookup tables generated with a vector radiative transfer code. Aerosol parameters are determined by a spectrum-matching technique that uses channels located at wavelengths longer than 0.86 µm. The aerosol information is extracted back to the visible based on aerosol models during the retrieval of water-leaving radiances. Quite reasonable water-leaving radiances have been obtained when our algorithm was applied to process hyperspectral imaging data acquired with an airborne imaging spectrometer.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. H. Goetz, G. Vane, J. Solomon, B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
    [CrossRef] [PubMed]
  2. B.-C. Gao, K. H. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
    [CrossRef]
  3. B.-C. Gao, C. O. Davis, “Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 132–141 (1997).
    [CrossRef]
  4. C. O. Davis, K. Carder, “Requirements driven design of an imaging spectrometer system for characterization of the coastal environment,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 322–329 (1997).
    [CrossRef]
  5. T. Wilson, C. O. Davis, “Hyperspectral remote sensing technology (HRST) program and the Naval EarthMap Observer (NEMO) satellite,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 2–10 (1998).
    [CrossRef]
  6. C. O. Davis, M. Kappus, B.-C. Gao, W. P. Bissett, W. Snyder, “The Naval EarthMap Observer (NEMO) science and naval products,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 11–19 (1998).
    [CrossRef]
  7. G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
    [CrossRef]
  8. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636 (1978).
    [CrossRef] [PubMed]
  9. H. R. Gordon, M. Wang, “Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  10. R. S. Fraser, S. Mattoo, E.-N. Yeh, C. R. McClain, “Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment,” J. Geophys. Res. 102, 17,107–17,118 (1997).
    [CrossRef]
  11. Z. Ahmad, R. S. Fraser, “An iterative radiative transfer code for ocean–atmosphere systems,” J. Atmos. Sci. 39, 656–665 (1982).
    [CrossRef]
  12. D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
    [CrossRef]
  13. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing system era,” J. Geophys. Res. 102, 17,081–17,106 (1997).
    [CrossRef]
  14. D. Tanre, Y. J. Kaufman, M. Herman, S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16,971–16,988 (1997).
    [CrossRef]
  15. M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
    [CrossRef]
  16. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  17. W. Ridgway, Code 913, NASA Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 1996).
  18. H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 angstrom,” Solar Phys. 90, 205–258 (1984).
    [CrossRef]
  19. Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996).
    [CrossRef] [PubMed]
  20. L. Han, D. C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in turbid reservoir,” Remote Sens. Environ. 62, 253–261 (1997).
    [CrossRef]
  21. K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993).
    [CrossRef]
  22. M. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, K. L. Carder, “Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data,” Remote Sens. Environ. 44, 217–230 (1993).
    [CrossRef]
  23. R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-23, 625–633 (1985).
    [CrossRef]

1997 (4)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing system era,” J. Geophys. Res. 102, 17,081–17,106 (1997).
[CrossRef]

D. Tanre, Y. J. Kaufman, M. Herman, S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16,971–16,988 (1997).
[CrossRef]

R. S. Fraser, S. Mattoo, E.-N. Yeh, C. R. McClain, “Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment,” J. Geophys. Res. 102, 17,107–17,118 (1997).
[CrossRef]

L. Han, D. C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in turbid reservoir,” Remote Sens. Environ. 62, 253–261 (1997).
[CrossRef]

1996 (1)

1994 (1)

1993 (4)

B.-C. Gao, K. H. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[CrossRef]

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[CrossRef]

K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993).
[CrossRef]

M. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, K. L. Carder, “Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data,” Remote Sens. Environ. 44, 217–230 (1993).
[CrossRef]

1992 (1)

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

1990 (1)

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
[CrossRef]

1985 (2)

R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-23, 625–633 (1985).
[CrossRef]

A. F. H. Goetz, G. Vane, J. Solomon, B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[CrossRef] [PubMed]

1984 (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 angstrom,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

1982 (1)

Z. Ahmad, R. S. Fraser, “An iterative radiative transfer code for ocean–atmosphere systems,” J. Atmos. Sci. 39, 656–665 (1982).
[CrossRef]

1978 (1)

Ahmad, Z.

Z. Ahmad, R. S. Fraser, “An iterative radiative transfer code for ocean–atmosphere systems,” J. Atmos. Sci. 39, 656–665 (1982).
[CrossRef]

Bissett, W. P.

C. O. Davis, M. Kappus, B.-C. Gao, W. P. Bissett, W. Snyder, “The Naval EarthMap Observer (NEMO) science and naval products,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 11–19 (1998).
[CrossRef]

Carder, K.

C. O. Davis, K. Carder, “Requirements driven design of an imaging spectrometer system for characterization of the coastal environment,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 322–329 (1997).
[CrossRef]

Carder, K. L.

Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996).
[CrossRef] [PubMed]

K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993).
[CrossRef]

M. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, K. L. Carder, “Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data,” Remote Sens. Environ. 44, 217–230 (1993).
[CrossRef]

Chen, R. F.

K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993).
[CrossRef]

Chrien, T. G.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[CrossRef]

Davis, C. O.

Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996).
[CrossRef] [PubMed]

K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993).
[CrossRef]

M. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, K. L. Carder, “Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data,” Remote Sens. Environ. 44, 217–230 (1993).
[CrossRef]

B.-C. Gao, C. O. Davis, “Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 132–141 (1997).
[CrossRef]

C. O. Davis, K. Carder, “Requirements driven design of an imaging spectrometer system for characterization of the coastal environment,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 322–329 (1997).
[CrossRef]

T. Wilson, C. O. Davis, “Hyperspectral remote sensing technology (HRST) program and the Naval EarthMap Observer (NEMO) satellite,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 2–10 (1998).
[CrossRef]

C. O. Davis, M. Kappus, B.-C. Gao, W. P. Bissett, W. Snyder, “The Naval EarthMap Observer (NEMO) science and naval products,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 11–19 (1998).
[CrossRef]

Deroo, C.

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
[CrossRef]

Deschamps, P. Y.

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
[CrossRef]

Duhaut, P.

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
[CrossRef]

Enmark, H. T.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Fraser, R. S.

R. S. Fraser, S. Mattoo, E.-N. Yeh, C. R. McClain, “Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment,” J. Geophys. Res. 102, 17,107–17,118 (1997).
[CrossRef]

R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-23, 625–633 (1985).
[CrossRef]

Z. Ahmad, R. S. Fraser, “An iterative radiative transfer code for ocean–atmosphere systems,” J. Atmos. Sci. 39, 656–665 (1982).
[CrossRef]

Gao, B.-C.

B.-C. Gao, K. H. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[CrossRef]

B.-C. Gao, C. O. Davis, “Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 132–141 (1997).
[CrossRef]

C. O. Davis, M. Kappus, B.-C. Gao, W. P. Bissett, W. Snyder, “The Naval EarthMap Observer (NEMO) science and naval products,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 11–19 (1998).
[CrossRef]

Goetz, A. F. H.

B.-C. Gao, K. H. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[CrossRef]

A. F. H. Goetz, G. Vane, J. Solomon, B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[CrossRef] [PubMed]

Gordon, H. R.

Green, R. O.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[CrossRef]

Hamilton, M.

K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993).
[CrossRef]

M. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, K. L. Carder, “Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data,” Remote Sens. Environ. 44, 217–230 (1993).
[CrossRef]

Han, L.

L. Han, D. C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in turbid reservoir,” Remote Sens. Environ. 62, 253–261 (1997).
[CrossRef]

Hansen, E. G.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[CrossRef]

Heidebrecht, K. H.

B.-C. Gao, K. H. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[CrossRef]

Herman, M.

D. Tanre, Y. J. Kaufman, M. Herman, S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16,971–16,988 (1997).
[CrossRef]

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
[CrossRef]

Kappus, M.

C. O. Davis, M. Kappus, B.-C. Gao, W. P. Bissett, W. Snyder, “The Naval EarthMap Observer (NEMO) science and naval products,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 11–19 (1998).
[CrossRef]

Kaufman, Y. J.

D. Tanre, Y. J. Kaufman, M. Herman, S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16,971–16,988 (1997).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-23, 625–633 (1985).
[CrossRef]

King, M. D.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Labs, D.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 angstrom,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

Lee, Z. P.

Mattoo, S.

D. Tanre, Y. J. Kaufman, M. Herman, S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16,971–16,988 (1997).
[CrossRef]

R. S. Fraser, S. Mattoo, E.-N. Yeh, C. R. McClain, “Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment,” J. Geophys. Res. 102, 17,107–17,118 (1997).
[CrossRef]

McClain, C. R.

R. S. Fraser, S. Mattoo, E.-N. Yeh, C. R. McClain, “Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment,” J. Geophys. Res. 102, 17,107–17,118 (1997).
[CrossRef]

Menzel, W. P.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Morcrette, J. J.

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
[CrossRef]

Mueller, J. L.

Muller-Karger, F.

K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993).
[CrossRef]

Neckel, H.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 angstrom,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

Peacock, T. G.

Perbos, J.

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
[CrossRef]

Pilorz, S. H.

M. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, K. L. Carder, “Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data,” Remote Sens. Environ. 44, 217–230 (1993).
[CrossRef]

Porter, W. M.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[CrossRef]

Reinersman, P.

K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993).
[CrossRef]

Rhea, W. J.

M. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, K. L. Carder, “Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data,” Remote Sens. Environ. 44, 217–230 (1993).
[CrossRef]

Ridgway, W.

W. Ridgway, Code 913, NASA Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 1996).

Rock, B. N.

A. F. H. Goetz, G. Vane, J. Solomon, B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[CrossRef] [PubMed]

Rundquist, D. C.

L. Han, D. C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in turbid reservoir,” Remote Sens. Environ. 62, 253–261 (1997).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Snyder, W.

C. O. Davis, M. Kappus, B.-C. Gao, W. P. Bissett, W. Snyder, “The Naval EarthMap Observer (NEMO) science and naval products,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 11–19 (1998).
[CrossRef]

Solomon, J.

A. F. H. Goetz, G. Vane, J. Solomon, B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[CrossRef] [PubMed]

Tanre, D.

D. Tanre, Y. J. Kaufman, M. Herman, S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16,971–16,988 (1997).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
[CrossRef]

Vane, G.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[CrossRef]

A. F. H. Goetz, G. Vane, J. Solomon, B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[CrossRef] [PubMed]

Wang, M.

Wilson, T.

T. Wilson, C. O. Davis, “Hyperspectral remote sensing technology (HRST) program and the Naval EarthMap Observer (NEMO) satellite,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 2–10 (1998).
[CrossRef]

Yeh, E.-N.

R. S. Fraser, S. Mattoo, E.-N. Yeh, C. R. McClain, “Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment,” J. Geophys. Res. 102, 17,107–17,118 (1997).
[CrossRef]

Appl. Opt. (3)

IEEE Trans. Geosci. Remote Sens. (1)

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (1)

R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-23, 625–633 (1985).
[CrossRef]

Int. J. Remote Sensing (1)

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos, P. Y. Deschamps, “Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code,” Int. J. Remote Sensing 11, 659–668 (1990).
[CrossRef]

J. Atmos. Sci. (1)

Z. Ahmad, R. S. Fraser, “An iterative radiative transfer code for ocean–atmosphere systems,” J. Atmos. Sci. 39, 656–665 (1982).
[CrossRef]

J. Geophys. Res. (3)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing system era,” J. Geophys. Res. 102, 17,081–17,106 (1997).
[CrossRef]

D. Tanre, Y. J. Kaufman, M. Herman, S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16,971–16,988 (1997).
[CrossRef]

R. S. Fraser, S. Mattoo, E.-N. Yeh, C. R. McClain, “Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment,” J. Geophys. Res. 102, 17,107–17,118 (1997).
[CrossRef]

Remote Sens. Environ. (5)

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The Airborne Visible Infrared Imaging Spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[CrossRef]

B.-C. Gao, K. H. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[CrossRef]

L. Han, D. C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in turbid reservoir,” Remote Sens. Environ. 62, 253–261 (1997).
[CrossRef]

K. L. Carder, P. Reinersman, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993).
[CrossRef]

M. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, K. L. Carder, “Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data,” Remote Sens. Environ. 44, 217–230 (1993).
[CrossRef]

Science (1)

A. F. H. Goetz, G. Vane, J. Solomon, B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[CrossRef] [PubMed]

Solar Phys. (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 angstrom,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

Other (6)

B.-C. Gao, C. O. Davis, “Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 132–141 (1997).
[CrossRef]

C. O. Davis, K. Carder, “Requirements driven design of an imaging spectrometer system for characterization of the coastal environment,” in Imaging Spectrometry III, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 322–329 (1997).
[CrossRef]

T. Wilson, C. O. Davis, “Hyperspectral remote sensing technology (HRST) program and the Naval EarthMap Observer (NEMO) satellite,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 2–10 (1998).
[CrossRef]

C. O. Davis, M. Kappus, B.-C. Gao, W. P. Bissett, W. Snyder, “The Naval EarthMap Observer (NEMO) science and naval products,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3437, 11–19 (1998).
[CrossRef]

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

W. Ridgway, Code 913, NASA Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Example of an AVIRIS spectrum acquired over the Chesapeake Bay area in August 1997.

Fig. 2
Fig. 2

Illustration for the definitions of solar zenith and azimuth angles and viewing zenith angle and azimuth angles.

Fig. 3
Fig. 3

Examples of simulated 0.61-µm channel reflectance (ρatm+sfc*) as a function of view angle for several relative azimuth angles. The simulations are made for a solar zenith angle of 36°, an aerosol optical depth of 0.2 at 0.55 µm, the maritime aerosol model with a relative humidity of 80%, and a surface wind speed of 6 m/s.

Fig. 4
Fig. 4

Examples of simulated reflectances (ρatm+sfc*) as a function of wavelength for four types of aerosol model at the same relative humidity of 50%. The simulations are made for a solar zenith angle of 36°, a view zenith angle of 54°, a relative azimuth angle of 156°, an aerosol optical depth of 0.7 at 0.55 µm, and a surface wind speed of 6 m/s.

Fig. 5
Fig. 5

Example of a calculated transmission spectrum at the resolution of the AVIRIS instrument (∼10 nm) for a Sun–surface–sensor path and for seven atmospheric gases.

Fig. 6
Fig. 6

(a) Examples of spectrum matching with AVIRIS data on (a) log–log plotting scales and (b) linear–linear scales. SZA, solar zenith angle; VZA, view zenith angle; AZIM, azimuth angle.

Fig. 7
Fig. 7

AVIRIS images of (a) 0.55 µm, (b) 0.66 µm, (c) 0.865, and (d) 1.04 µm acquired over the mouth of the Chesapeake Bay (37°12′N and 76°24′W) in eastern Virginia on 17 August 1997.

Fig. 8
Fig. 8

(a) AVIRIS radiance spectra measured over a very turbid area (solid curve) and a less-turbid area (dotted curve) in the AVIRIS scene in Fig. 6. (b) Water-leaving reflectance spectra retrieved from the two radiance spectra in (a).

Fig. 9
Fig. 9

(a) Color composite image of the AVIRIS scene over the Florida Keys, (b) the radiance spectra extracted from the four areas marked I–IV in (a), (c) the retrieved water-leaving reflectance spectra from the four spectra in (b). During the processing of the color image in (a), the 0.70-µm AVIRIS channel is assigned as the red channel, the 0.55-µm channel as the green channel, and the 0.44-µm channel as the blue channel. The color image is obtained by superposition of the red, green, and blue channel images.

Tables (1)

Tables Icon

Table 1 Relative Number Concentrations of Small and Large Particles for Four Basic Types of Aerosol Model

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Lobs=L0λ; θ, ϕ; θ0, ϕ0; τa+Lsfcλ; θ, ϕ; θ0, ϕ0; W; τatuλ; θ; τa+Lwλ; θ, ϕ; θ0, ϕ0; W; τa; Otuλ; θ; τa,
Latm+sfc=L0λ; θ, ϕ; θ0, ϕ0; τa+Lsfcλ; θ, ϕ; θ0, ϕ0; W; τatuλ; θ; τa.
Lobs=Latm+sfc+Lwtu.
πLobs/μ0E0=πLatm+sfc/μ0E0+πLwtdtu/μ0E0td,
ρobs*=πLobs/μ0E0,
ρatm+sfc*=πLatm+sfc/μ0E0,
ρw=πLw/μ0E0td,
ρobs*=ρatm+sfc*+ρwtdtu.
ρobs*=ρatm+sfc*+ρwtdtu/1-sρw.
ρobs*=Tgρatm+sfc*+ρwtdtu/1-sρw.
ρw=ρobs*/Tg-ρatm+sfc*/tdtu+sρobs*/Tg-ρatm+sfc*.

Metrics