Abstract

Infrared propagation at low altitudes is determined by extinction that is due to molecules and aerosol particles and ray bending by refraction, three effects that control the mean value of the signal. Interference causes the signal to fluctuate, or scintillate, about the mean value. We discuss the design, calibration, and limitations of a field instrument for measuring optical propagation inside the midwave and long-wave infrared atmospheric windows. The instrument, which is accurate to ±10%, has been used to investigate aerosol, refractive, and scintillation phenomena in the marine boundary layer.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Raz, A. D. Devir, A. Ben-Shalom, U. P. Oppenheim, S. G. Lipson, “Measurement of the integrated water vapor content in the atmosphere by a radiometric method,” Appl. Opt. 26, 2436–2440 (1987).
    [CrossRef] [PubMed]
  2. A. Berk, L. S. Bernstein, D. C. Robertson, “Modtran: a moderate resolution model for lowtran 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  3. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  4. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughn, eds. (McGraw-Hill, New York, 1978), Section 14, pp. 14-13–14-22.
  5. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).
  6. S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).
    [CrossRef]
  7. R. J. Hill, S. F. Clifford, R. S. Lawrence, “Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations,” J. Opt. Soc. Am. 70, 1192–1205 (1980).
    [CrossRef]
  8. E. L. Andreas, “Estimating Cn2 over snow and sea ice from meteorological data,” J. Opt. Soc. Am. A 5, 481–495 (1988).
    [CrossRef]
  9. R. S. Lawrence, J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970).
    [CrossRef]
  10. W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
    [CrossRef]
  11. J. E. Freehafer, W. T. Fishback, W. H. Furry, D. E. Kerr, “Theory of propagation in a horizontally stratified atmosphere,” in Propagation of Short Radio Waves, D. E. Kerr, ed. (McGraw-Hill, New York, 1951), p. 35.
  12. R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989), Chap. 6.
  13. R. J. Hill, G. R. Ochs, “Fine calibration of large-aperture optical scintillometers and an optical estimate of inner scale turbulence,” Appl. Opt. 17, 3608–3612 (1978).
    [CrossRef] [PubMed]
  14. J. H. Churnside, R. L. Lataitis, J. J. Wilson, “Two-color correlation of atmospheric scintillation,” Appl. Opt. 31, 4285–4290 (1992).
    [CrossRef] [PubMed]
  15. S. F. Clifford, “Temporal-frequency spectra for a spherical wave propagating through atmospheric turbulence,” J. Opt. Soc. Am. 61, 1285–1292 (1971).
    [CrossRef]
  16. Model SR-20, manufactured by CI Systems, Incorporated, 5137 Clareton Drive, Suite 220, Agoura Hills, Calif. 91301.
  17. Model DR-150 VHF FM Transceiver, Alinco Electronics Incorporated, 438 Amapola Avenue, Suite 130, Torrance, Calif. 90501-6201.
  18. EG&G Judson Optoelectronics, 221 Commerce Drive, Montgomeryville, Pa. 18936.
  19. A. T. Friberg, “On the generalized radiance associated with radiation from a quasihomogeneous planar source,” Opt. Acta 28, 261–277 (1981).
    [CrossRef]
  20. E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am. 68, 7–17 (1978).
    [CrossRef]
  21. R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), p. 323 ff. The blade factor, determined by the relative sizes of the blackbody aperture and the chopper blade, is the ratio of the rms value of the first harmonic of the signal to its peak-to-peak value.
  22. T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
    [CrossRef]
  23. A. Deepak, M. A. Box, “Forwardscattering corrections for optical extinction measurements in aerosol media. 1: Monodispersions,” Appl. Opt. 17, 2900–2908 (1978).
    [CrossRef] [PubMed]
  24. B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997).
    [CrossRef]
  25. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.
  26. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), p. 86 ff.
  27. The wait time is the time required for the lock-in to reach 99% of a step change at its input.
  28. C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.
  29. P. A. Frederickson, K. L. Davidson, C. R. Zeisse, C. S. Bendall, “Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 571–578.

1997

1992

1988

1987

1983

S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).
[CrossRef]

1981

A. T. Friberg, “On the generalized radiance associated with radiation from a quasihomogeneous planar source,” Opt. Acta 28, 261–277 (1981).
[CrossRef]

1980

1979

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

1978

1971

1970

R. S. Lawrence, J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

1968

T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
[CrossRef]

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Andreas, E. L.

Barrios, A. E.

C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.

Ben Dor, B.

Bendall, C. S.

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, C. S. Bendall, “Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 571–578.

Ben-Shalom, A.

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “Modtran: a moderate resolution model for lowtran 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “Modtran: a moderate resolution model for lowtran 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Box, M. A.

Boyd, R. W.

R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), p. 86 ff.

Bruscaglioni, P.

Businger, J. A.

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Chu, T. S.

T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
[CrossRef]

Churnside, J. H.

Clifford, S. F.

Clough, S. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.

Davidson, K. L.

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, C. S. Bendall, “Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 571–578.

C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.

Deepak, A.

Devir, A. D.

Donelli, P.

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughn, eds. (McGraw-Hill, New York, 1978), Section 14, pp. 14-13–14-22.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.

Fishback, W. T.

J. E. Freehafer, W. T. Fishback, W. H. Furry, D. E. Kerr, “Theory of propagation in a horizontally stratified atmosphere,” in Propagation of Short Radio Waves, D. E. Kerr, ed. (McGraw-Hill, New York, 1951), p. 35.

Frederickson, P. A.

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, C. S. Bendall, “Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 571–578.

C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.

Freehafer, J. E.

J. E. Freehafer, W. T. Fishback, W. H. Furry, D. E. Kerr, “Theory of propagation in a horizontally stratified atmosphere,” in Propagation of Short Radio Waves, D. E. Kerr, ed. (McGraw-Hill, New York, 1951), p. 35.

Friberg, A. T.

A. T. Friberg, “On the generalized radiance associated with radiation from a quasihomogeneous planar source,” Opt. Acta 28, 261–277 (1981).
[CrossRef]

Furry, W. H.

J. E. Freehafer, W. T. Fishback, W. H. Furry, D. E. Kerr, “Theory of propagation in a horizontally stratified atmosphere,” in Propagation of Short Radio Waves, D. E. Kerr, ed. (McGraw-Hill, New York, 1951), p. 35.

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughn, eds. (McGraw-Hill, New York, 1978), Section 14, pp. 14-13–14-22.

Gathman, S. G.

S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).
[CrossRef]

C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.

Hill, R. J.

Hogg, D. C.

T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
[CrossRef]

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), p. 323 ff. The blade factor, determined by the relative sizes of the blackbody aperture and the chopper blade, is the ratio of the rms value of the first harmonic of the signal to its peak-to-peak value.

Hufnagel, R. E.

R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989), Chap. 6.

Ismaelli, A.

Katsaros, K. B.

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

Kerr, D. E.

J. E. Freehafer, W. T. Fishback, W. H. Furry, D. E. Kerr, “Theory of propagation in a horizontally stratified atmosphere,” in Propagation of Short Radio Waves, D. E. Kerr, ed. (McGraw-Hill, New York, 1951), p. 35.

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Lataitis, R. L.

Lawrence, R. S.

Lipson, S. G.

Liu, W. T.

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughn, eds. (McGraw-Hill, New York, 1978), Section 14, pp. 14-13–14-22.

Moision, W. K.

C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.

Nener, B. D.

C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.

Ochs, G. R.

Oppenheim, U. P.

Raz, E.

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “Modtran: a moderate resolution model for lowtran 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughn, eds. (McGraw-Hill, New York, 1978), Section 14, pp. 14-13–14-22.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.

Shaviv, G.

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Strohbehn, J. W.

R. S. Lawrence, J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughn, eds. (McGraw-Hill, New York, 1978), Section 14, pp. 14-13–14-22.

Wilson, J. J.

Wolf, E.

E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am. 68, 7–17 (1978).
[CrossRef]

Zeisse, C. R.

C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, C. S. Bendall, “Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 571–578.

Appl. Opt.

Bell Syst. Tech. J.

T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
[CrossRef]

J. Atmos. Sci.

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Acta

A. T. Friberg, “On the generalized radiance associated with radiation from a quasihomogeneous planar source,” Opt. Acta 28, 261–277 (1981).
[CrossRef]

Opt. Eng.

S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).
[CrossRef]

Proc. IEEE

R. S. Lawrence, J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

Other

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), p. 323 ff. The blade factor, determined by the relative sizes of the blackbody aperture and the chopper blade, is the ratio of the rms value of the first harmonic of the signal to its peak-to-peak value.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.

R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), p. 86 ff.

The wait time is the time required for the lock-in to reach 99% of a step change at its input.

C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, C. S. Bendall, “Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 571–578.

J. E. Freehafer, W. T. Fishback, W. H. Furry, D. E. Kerr, “Theory of propagation in a horizontally stratified atmosphere,” in Propagation of Short Radio Waves, D. E. Kerr, ed. (McGraw-Hill, New York, 1951), p. 35.

R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989), Chap. 6.

Model SR-20, manufactured by CI Systems, Incorporated, 5137 Clareton Drive, Suite 220, Agoura Hills, Calif. 91301.

Model DR-150 VHF FM Transceiver, Alinco Electronics Incorporated, 438 Amapola Avenue, Suite 130, Torrance, Calif. 90501-6201.

EG&G Judson Optoelectronics, 221 Commerce Drive, Montgomeryville, Pa. 18936.

A. Berk, L. S. Bernstein, D. C. Robertson, “Modtran: a moderate resolution model for lowtran 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughn, eds. (McGraw-Hill, New York, 1978), Section 14, pp. 14-13–14-22.

E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Broadband molecular transmission as a function of absolute humidity. These curves are predicted by modtran 3.5 for propagation through a 1976 U.S. Standard Atmosphere. The air temperature is 20 °C, and the range is 7 km. The relative spectral responsivity for each band is given below in Figs. 9 (long-wave band) and 10 (midwave band).

Fig. 2
Fig. 2

Broadband molecular transmission as a function of range. The absolute humidity is 14 g m-3 (a relative humidity of 80%). Other conditions are the same as for Fig. 1.

Fig. 3
Fig. 3

Monochromatic aerosol transmission as a function of average 24-h wind speed for optical wave numbers of 2860 cm-1 (3.5 µm, lower curve) and 940 cm-1 (10.6 µm, upper curve). The range is 7 km. We derived these curves from a particle size distribution given by the Navy aerosol model by using Mie theory [Eq. (2)] and Beer’s law [Eq. (3)].

Fig. 4
Fig. 4

Variation of arrival angle of a ray that has traversed a 7-km path through an atmosphere whose air–sea temperature difference is given on the abscissa. Both the transmitter and the receiver are assumed to be mounted 3 m above the Earth’s surface. An angle of 0 mrad corresponds to a ray parallel to the Earth at (on the local horizon of) the receiver.

Fig. 5
Fig. 5

Flat-Earth ray trace diagram for 100 rays launched from a transmitter at an altitude of 7.9 m above mean sea level toward a receiver (solid dot) 15 km away at an altitude of 4 m above mean sea level. Note that no rays are able to reach the receiver: the receiver is below the horizon. The inset shows the signal measured by the TNO Physics and Electronics Laboratory for nearby times. The vertical line in the inset denotes the exact time corresponding to the ray trace. The signal then was 5% of the free-space (F.S.) value.

Fig. 6
Fig. 6

Same as Fig. 5 except 2 h later. The tide has fallen by 40 cm in the meantime, and now the receiver is not only above the horizon, it is in a mirage. The inset shows the signal measured by the TNO Physics and Electronics Laboratory at surrounding times. The vertical line in the inset indicates the exact time corresponding to the ray trace. The signal then was 190% of the free-space (F.S.) value.

Fig. 7
Fig. 7

Schematic diagram of a broadband transmissometer with a blackbody source and two discrete detectors, one for the midwave band and one for the long-wave band. The expanded view shows the beam splitter (dashed line) and the collimating lenses. Because each detector sees exactly the same path through the atmosphere, this instrument is suitable for measuring the correlation between the scintillation in the two bands. The lock-in wait time is typically set to 30 s for transmission and 10 ms for scintillation.

Fig. 8
Fig. 8

Receiver installed inside a trailer in the field. The 25-cm diameter horizontal aluminum tube, in the foreground, supports the receiver primary and secondary mirrors (neither of which are visible in this photograph) as well as the two detector Dewars, which are the two white cylinders, mounted vertically on the top left end of the aluminum tube. One of two cones for pointing the receiver is shown near the left front corner of the table. The table rests on three pipes that reach through holes in the floor to a concrete pad on the ground below.

Fig. 9
Fig. 9

Combined relative spectral responsivity of the long-wave detector and filter. The vertical dashed lines at 882 and 1023 cm-1 show the 50% response points.

Fig. 10
Fig. 10

Combined relative spectral responsivity of the midwave detector and filter. The vertical dashed lines at 2430 and 2842 cm-1 show the 50% response points.

Fig. 11
Fig. 11

Overall spectral behavior of the transmissometer. The thick solid curve shows the spectral radiance, on the left ordinate, of the 1200-K blackbody source. The light gray area under the thin solid line shows, on the right ordinate, the 7-km spectral transmission of the atmosphere after division by ten. The dark vertical bars indicate the relative spectral responsivities of the long-wave and midwave detector–filter pairs (shown in greater detail in Figs. 9 and 10, respectively). The response of the transmissometer is given by the integrated product of these three curves.

Fig. 12
Fig. 12

Geometry pertaining to forward scattering by aerosol particles. Particles that contribute to the effect must be located inside the intersection of two cones. This intersecting volume is widest at the distance l from the transmitter. A single particle, contained in an incremental disk located a distance x from the transmitter, is shown scattering radiation into the receiver, located a distance L - x from the particle.

Fig. 13
Fig. 13

Two days of transmission data acquired on a 7-km range across San Diego Bay.

Fig. 14
Fig. 14

Two seconds of midwave scintillation data acquired on a 7-km range across San Diego Bay.

Tables (3)

Tables Icon

Table 1 Source and Detector Properties and 7-km Free-Space Signals in the Fielda

Tables Icon

Table 2 Typical Values Used during Calibration and Field Operation of the Transmissometera

Tables Icon

Table 3 Estimates of Percent Uncertainty due to Measurement Imprecision, Component Nonuniformity, and Operational Instability

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

τmrν= τmνrνdν rνdν.
σpν=0 πr2 Qextν, r, ñdNdrdr.
τpν=exp-σpνL.
α=-L2dMdh.
τ=τmrνexp-σpνLF2.
ln1+σV2μV2=ln1+sV2=σln I2=4σχ2,
nx+r-nx2=Cn2r2/3.
sV2=exp0.496Cn2k7/6L11/6-10.496Cn2k7/6L11/6,
sV2=exp0.9Cn2D-7/3L3-10.9Cn2D-7/3L3.
V0=F0P0=F0BT0, rνA0Af2 ρτ0.
V=FP=FBT, rνATxARxL2 ρτVfsτ,
VV0=τVfsV0=FF0BT, rνBT0, rνATxARxA0AfL2ττ0.
τ=VVfs,
Vfs=FF0BT, rνBT0, rνATxARxA0AfL2V0
βpν, θ=1VJν, θH=12k20i1ν, r, ñ, θ+i2ν, r, ñ, θdNdrdr.
Vx=π4 θTx2x2dx, xl,  Vx=π4 θRx2L-x2dx, x>l,
Hx=BATxx2,
Pscx=Jν, 0ARxL-x2=βpν, 0VxHxARxL-x2.
Psc=0L Pscxdx=βpν, 0BATxARxL2π2 LθTxθRx.
Φν, θ=βpν, θβpν.
PscPfs=π2 θTxθRxΦν, 0βpνLπ2 θTxθRxΦν, 0σpνL=-π2 θTxθRxΦν, 0lnτp
GτSτN=VVnΔf=τVfsVnΔf
Lτ2=FBATxARxρGτVnΔf τ
Lτ2 expβmLτ=FBATxARxρGτVnΔf,
GχSχN=σVVnΔf
μV=τVfs
Lχ1/2=FBATxARxρ0.9Cn2D-7/31/2GχVnΔf τ
Lχ1/2 expβmLχ=FBATxARxρ0.9Cn2D-7/31/2GχVnΔf.
Δτ=VnΔfLτ2FBATxARxρ.

Metrics