Abstract

An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometeorological humidity data were used to calibrate the ratio of the lidar gains of the H2O and the N2 photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
    [CrossRef]
  2. D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
    [CrossRef]
  3. W. E. Eichinger, D. I. Cooper, M. Parlange, G. Katul, “The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer,” IEEE Trans. Geosci. Remote Sens. 31, 70–79 (1993).
    [CrossRef]
  4. W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
    [CrossRef] [PubMed]
  5. B. J. Rye, R. M. Hardesty, “Nonlinear Kalman filtering techniques for incoherent backscatter lidar: return power and log power estimation,” Appl. Opt. 28, 3908–3917 (1989).
    [CrossRef] [PubMed]
  6. D. G. Lainiotis, P. Papaparaskeva, G. Kothapalli, K. Plataniotis, “Adaptive filter applications to lidar: return power and log power estimation,” IEEE Trans. Geosci. Remote Sens. 34, 886–891 (1996).
    [CrossRef]
  7. R. E. Warren, “Concentration estimation from differential absorption lidar using nonstationary Wiener filtering,” Appl. Opt. 28, 5047–5051 (1989).
    [CrossRef] [PubMed]

1996

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

D. G. Lainiotis, P. Papaparaskeva, G. Kothapalli, K. Plataniotis, “Adaptive filter applications to lidar: return power and log power estimation,” IEEE Trans. Geosci. Remote Sens. 34, 886–891 (1996).
[CrossRef]

1994

1993

W. E. Eichinger, D. I. Cooper, M. Parlange, G. Katul, “The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer,” IEEE Trans. Geosci. Remote Sens. 31, 70–79 (1993).
[CrossRef]

1992

D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
[CrossRef]

1989

Archuletta, F. L.

Barr, S.

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

Cooper, D. I.

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
[CrossRef] [PubMed]

W. E. Eichinger, D. I. Cooper, M. Parlange, G. Katul, “The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer,” IEEE Trans. Geosci. Remote Sens. 31, 70–79 (1993).
[CrossRef]

D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
[CrossRef]

Cottingame, W.

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

Dugas, W.

D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
[CrossRef]

Eichinger, W. E.

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
[CrossRef] [PubMed]

W. E. Eichinger, D. I. Cooper, M. Parlange, G. Katul, “The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer,” IEEE Trans. Geosci. Remote Sens. 31, 70–79 (1993).
[CrossRef]

D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
[CrossRef]

Hardesty, R. M.

Hipps, L.

D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
[CrossRef]

Hof, D.

Holtkamp, D. B.

W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
[CrossRef] [PubMed]

D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
[CrossRef]

Hynes, M. V.

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

Karl, R. R.

W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
[CrossRef] [PubMed]

D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
[CrossRef]

Katul, G.

W. E. Eichinger, D. I. Cooper, M. Parlange, G. Katul, “The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer,” IEEE Trans. Geosci. Remote Sens. 31, 70–79 (1993).
[CrossRef]

Keller, C. F.

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

Kothapalli, G.

D. G. Lainiotis, P. Papaparaskeva, G. Kothapalli, K. Plataniotis, “Adaptive filter applications to lidar: return power and log power estimation,” IEEE Trans. Geosci. Remote Sens. 34, 886–891 (1996).
[CrossRef]

Lainiotis, D. G.

D. G. Lainiotis, P. Papaparaskeva, G. Kothapalli, K. Plataniotis, “Adaptive filter applications to lidar: return power and log power estimation,” IEEE Trans. Geosci. Remote Sens. 34, 886–891 (1996).
[CrossRef]

Lebeda, C. F.

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

Papaparaskeva, P.

D. G. Lainiotis, P. Papaparaskeva, G. Kothapalli, K. Plataniotis, “Adaptive filter applications to lidar: return power and log power estimation,” IEEE Trans. Geosci. Remote Sens. 34, 886–891 (1996).
[CrossRef]

Parlange, M.

W. E. Eichinger, D. I. Cooper, M. Parlange, G. Katul, “The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer,” IEEE Trans. Geosci. Remote Sens. 31, 70–79 (1993).
[CrossRef]

Plataniotis, K.

D. G. Lainiotis, P. Papaparaskeva, G. Kothapalli, K. Plataniotis, “Adaptive filter applications to lidar: return power and log power estimation,” IEEE Trans. Geosci. Remote Sens. 34, 886–891 (1996).
[CrossRef]

Poling, D. A.

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

Quick, C. R.

W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
[CrossRef] [PubMed]

D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
[CrossRef]

Rye, B. J.

Tiee, J.

Warren, R. E.

Appl. Opt.

Boundary-Layer Meterol.

D. I. Cooper, W. E. Eichinger, D. B. Holtkamp, R. R. Karl, C. R. Quick, W. Dugas, L. Hipps, “Spatial variability of water vapor turbulent transfer within the boundary layer,” Boundary-Layer Meterol. 61, 389–405 (1992).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

D. G. Lainiotis, P. Papaparaskeva, G. Kothapalli, K. Plataniotis, “Adaptive filter applications to lidar: return power and log power estimation,” IEEE Trans. Geosci. Remote Sens. 34, 886–891 (1996).
[CrossRef]

W. E. Eichinger, D. I. Cooper, M. Parlange, G. Katul, “The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer,” IEEE Trans. Geosci. Remote Sens. 31, 70–79 (1993).
[CrossRef]

J. Atmos. Sci.

D. I. Cooper, W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, D. A. Poling, “High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations,” J. Atmos. Sci. 53, 2054–2075 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of the experimental location. Note that the lidar is located 20 m north of the base of the SIO pier.

Fig. 2
Fig. 2

Typical single LOS raw voltage signals versus range for the PMT’s of the H2O (top) and N2 (bottom) channels.

Fig. 3
Fig. 3

Standard deviation of the unfiltered sum of the true mixing ratio and its associated noise as a function of range.

Fig. 4
Fig. 4

Single LOS signals of P H2 O + P H2 O ,noise (top) and P N2 + P N2 ,noise (bottom) for r < 700 m.

Fig. 5
Fig. 5

Single LOS cumulative spatial integrals I H2 O(0, r) (top) and I N2 (0, r) (bottom) for r < 700 m.

Fig. 6
Fig. 6

Raw (top) and filtered (bottom) mixing ratios as a function of range and time.

Fig. 7
Fig. 7

Spatial resolution of the filtered mixing ratio as a function of range for the 36 LOS’s of the data.

Fig. 8
Fig. 8

Standard deviation of the raw and the filtered mixing ratios as a function of range.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

r=2ct,
PA,k,j,raw=PA,k,j+PA,j,offset+PA,k,ringing+PA,k,j,noise.
PA,k,j=ri,krf,k RA,jrdr,
RN2,jr=EjCN2FN2rnN2,jrβN2,jrexp-0rαe,jr+αN2,jrdrr2,
RH2O,jr=EjCH2OFH2OrnH2O,jrβH2O,jrexp-0rαe,jr+αH2O,jrdrr2.
PN2,k,j=ri,krf,kEjCN2FN2rnN2,jrβN2,jrexp-0rαe,jr+αN2,jrdrr2dr,
PH2O,k,j=ri,krf,kEjCH2OFH2OrnH2O,jrβH2O,jrexp-0rαe,jr+αH2O,jrdrr2dr.
PN2,k,j=EjCN2FN2,knN2,k,jβN2,k,j exp-i=1kαe,j,i+αN2,j,i-12αe,j,k+αN2,j,kΔrrk2,
PH2O,k,j=EjCH2OFH2O,knH2O,k,jβH2O,k,j exp-i=1kαe,j,i+αH2O,j,i-12αe,j,k+αH2O,j,kΔrrk2,
qk,j=nH2O,k,jMH2OnN2,k,jMN2+nO2,k,jnN2,k,j MO2+nAr,k,jnN2,k,j MAr,
qk,j=PH2O,k,jPN2,k,jMH2OMN2+nO2,k,jnN2,k,j MO2+nAr,k,jnN2,k,j MAr×CN2FN2,kβN2,k,jCH2OFH2O,kβH2O,k,j×exp-i=1kαH2O,j,i-αN2,j,i-12αH2O,j,k-αN2,j,kΔr.
Mr=MH2OMN2+nO2nN2 MO2+nArnN2 MAr.
qk,j=PH2O,k,jPN2,k,jCN2βN2CH2OβH2O MrFr,k exp-αH2O-αN2rk.
δqk,jqk,j=δPH2O,k,jPH2O,k,j2+δPN2,k,jPN2,k,j2+Δother,k,j21/2,
RA,jr=PA,k,jΔr,  ri,k<r<rf,k.
IA,j0, r=0r RA,jrdr,
IA,j0, rf,k=m=1k PA,m,j=m=1k RA,jrmΔr.
δIA,jri,m, rf,n=k=mnδPA,k,j21/2,
δIA,jri,m, rf,nIA,jri,m, rf,n=k=mnδPA,k,j21/2IA,jri,m, rf,n.
δIA,j0, rf,k=δPAk.
δIA,jri,k, rf,l=δPAl-k+11/2.
δIA,jrmin, rmax=δPArmax-rminΔr1/2,
δIA,jrmin, rmaxIA,jrmin, rmax=δPAIA,jrmin, rmaxrmax-rminΔr1/2.
qjrˆ=IH2O,jrmin, rmaxIN2,jrmin, rmaxCN2βN2CH2OβH2O MrFr,k×exp-αH2O-αN2rˆ,
δqjrˆqjrˆ=δIH2O,jrmin, rmaxIH2O,jrmin, rmax2+δIN2,jrmin, rmaxIN2,jrmin, rmax2+Δother21/2,
rˆ=rminrmaxRH2O,jr+RN2,jrrdrrminrmaxRH2O,jr+RN2,jrdr.
δqjrˆqjrˆ=δPH2OIH2O,jrmin, rmax2+δPN2IN2,jrmin, rmax2×rmax-rminΔr+Δother21/2.
PA,j,offset1=1512k=15372048 PA,k,j,raw.
P¯A,k=1NLOSj=1NLOSPA,k,j,raw-PA,j,offset1.
PA,j,offset=PA,j,offset1+PA,offset2.

Metrics