Abstract

We present an optoelectronic module called the equivalency-processing parallel photonic integrated circuit (EP3IC) that is created specifically to implement high-speed parallel equivalence searches (i.e., database word searches). The module combines a parallel-computation model with multiwavelength photonic integrated-circuit technology to achieve high-speed data processing. On the basis of simulation and initial analytical computation, a single-step multicomparand word-parallel bit-parallel equality search can attain an aggregate processing speed of 82 Tbit/s. We outline the theoretical design of the monolithic module and the integrated components and compare this with a functionally identical bulk-optics implementation. This integrated-circuit solution provides relatively low-power operation, fast switching speed, a compact system footprint, vibration tolerance, and ease of manufacturing.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Giboney, L. B. Aronson, B. E. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35, 43–53 (1998).
    [CrossRef]
  2. T. Szymanski, H. Hinton, “Reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
    [CrossRef] [PubMed]
  3. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), pp. 232–295.
  4. A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).
    [CrossRef] [PubMed]
  5. P. A. Mitkas, L. J. Irakliotis, F. R. Beyette, S. A. Feld, C. W. Wilmsen, “Optoelectronic data filter for selection and projection,” Appl. Opt. 33, 1345–1353 (1994).
    [CrossRef] [PubMed]
  6. S. Akyokus, P. B. Berra, “A 3-D optical database machine,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 543–551.
    [CrossRef]
  7. A. Louri, J. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8164 (1994).
    [CrossRef] [PubMed]
  8. A. Louri, J. Hatch, “An optical content-addressable parallel processor for high-speed database processing: theoretical concepts and experimental results, Special Issue on Associative Processors,” IEEE Comput. 27(11), 65–72 (1994).
  9. P. S. Guilfoyle, R. V. Stone, “Digital optical computer II,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 214–222 (1991).
    [CrossRef]
  10. P. Y. Choo, A. Detofsky, A. Louri, “A multi-wavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
    [CrossRef]
  11. P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.
  12. P. Y. Choo, A. Detofsky, A. Louri, “An optical, architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” Optics in Computing ‘98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
    [CrossRef]
  13. P. Y. Choo, A. Detofsky, A. Louri, “Multiwavelength optical content-addressable parallel processor for high-speed parallel relational database processing,” Appl. Opt 38, 5594–5604 (1999).
    [CrossRef]
  14. A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998).
    [CrossRef]
  15. L. Coldren, S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  16. S. Chandrasekhar, “The progress and performance of long wavelength OEIC photoreceivers incorporating heterojunction bipolar transistors,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 45–65.
    [CrossRef]
  17. U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995).
    [CrossRef]
  18. C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
    [CrossRef]
  19. J. B. D. Soole, H. LeBlanc, N. Andreadakis, R. Bhat, C. Caneau, M. Koza, “Monolithic InP reflection-grating multiplexer/demultiplexers for WDM components operating in the long wavelength fiber band,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 111–133.
    [CrossRef]
  20. R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28, 565–573 (1996).
    [CrossRef]
  21. Prometheus Users Manual, Version 3.1 (BBV Software, Enschede, The Netherlands, 1999).
  22. ASAP Advanced Tutorial, Version 6.5 (Breault Research Organization, Tucson, Ariz., 1999).
  23. S. Akiba, M. Usami, K. Utaka, “1.5-µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol. LT-5, 1564–1573 (1987).
    [CrossRef]
  24. H. Bissessur, F. Gaborit, B. Martin, G. Ripoche, “Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance,” Electron. Lett. 31, 1372–1373 (1995).
    [CrossRef]
  25. W.-Y. Hwang, “TE–TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron. 32, 1054–1062 (1996).
    [CrossRef]
  26. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. Twieg, J. Swalen, G. Bjorklund, C. Wilson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
    [CrossRef]
  27. M. Quillec, Materials for Optoelectronics (Kluwer, New York, 1996).
    [CrossRef]
  28. M. J. Bloemer, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619–1621 (1992).
    [CrossRef]
  29. M. Izutsu, Y. Nakai, T. Sueta, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett. 7, 136–138 (1982).
    [CrossRef] [PubMed]
  30. J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991).
    [CrossRef]
  31. R. J. Deri, R. Hawkins, C. Caneau, E. Pennings, N. Andreadakis, “Ultracompact monolithic integration of polarization diversity waveguide/photodiodes,” Appl. Phys. Lett. 59, 1823–1825 (1991).
    [CrossRef]
  32. R. J. Deri, “Impedance matching for enhanced waveguide/photodetector integration,” Appl. Phys. Lett. 55, 2712–2714 (1989).
    [CrossRef]
  33. European Commission, “Optoelectronic interconnects for integrated circuits,” in Technology Roadmap [Microelectronics Advanced Research Initiative, European Strategic Program on Research in Information Technology (ESPRIT), June1998].
  34. B. P. Keyworth, D. Corazza, J. McMullin, “Low-cost pigtailing of vertical cavity surface emitting laser arrays,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 361–366.
    [CrossRef]

1999 (1)

P. Y. Choo, A. Detofsky, A. Louri, “Multiwavelength optical content-addressable parallel processor for high-speed parallel relational database processing,” Appl. Opt 38, 5594–5604 (1999).
[CrossRef]

1998 (2)

1996 (3)

T. Szymanski, H. Hinton, “Reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
[CrossRef] [PubMed]

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28, 565–573 (1996).
[CrossRef]

W.-Y. Hwang, “TE–TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron. 32, 1054–1062 (1996).
[CrossRef]

1995 (2)

H. Bissessur, F. Gaborit, B. Martin, G. Ripoche, “Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance,” Electron. Lett. 31, 1372–1373 (1995).
[CrossRef]

U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995).
[CrossRef]

1994 (3)

P. A. Mitkas, L. J. Irakliotis, F. R. Beyette, S. A. Feld, C. W. Wilmsen, “Optoelectronic data filter for selection and projection,” Appl. Opt. 33, 1345–1353 (1994).
[CrossRef] [PubMed]

A. Louri, J. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8164 (1994).
[CrossRef] [PubMed]

A. Louri, J. Hatch, “An optical content-addressable parallel processor for high-speed database processing: theoretical concepts and experimental results, Special Issue on Associative Processors,” IEEE Comput. 27(11), 65–72 (1994).

1992 (2)

A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).
[CrossRef] [PubMed]

M. J. Bloemer, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619–1621 (1992).
[CrossRef]

1991 (2)

J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991).
[CrossRef]

R. J. Deri, R. Hawkins, C. Caneau, E. Pennings, N. Andreadakis, “Ultracompact monolithic integration of polarization diversity waveguide/photodiodes,” Appl. Phys. Lett. 59, 1823–1825 (1991).
[CrossRef]

1990 (1)

1989 (1)

R. J. Deri, “Impedance matching for enhanced waveguide/photodetector integration,” Appl. Phys. Lett. 55, 2712–2714 (1989).
[CrossRef]

1987 (1)

S. Akiba, M. Usami, K. Utaka, “1.5-µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol. LT-5, 1564–1573 (1987).
[CrossRef]

1982 (1)

Akiba, S.

S. Akiba, M. Usami, K. Utaka, “1.5-µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol. LT-5, 1564–1573 (1987).
[CrossRef]

Akyokus, S.

S. Akyokus, P. B. Berra, “A 3-D optical database machine,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 543–551.
[CrossRef]

Andreadakis, N.

J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991).
[CrossRef]

R. J. Deri, R. Hawkins, C. Caneau, E. Pennings, N. Andreadakis, “Ultracompact monolithic integration of polarization diversity waveguide/photodiodes,” Appl. Phys. Lett. 59, 1823–1825 (1991).
[CrossRef]

J. B. D. Soole, H. LeBlanc, N. Andreadakis, R. Bhat, C. Caneau, M. Koza, “Monolithic InP reflection-grating multiplexer/demultiplexers for WDM components operating in the long wavelength fiber band,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 111–133.
[CrossRef]

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Aronson, L. B.

K. S. Giboney, L. B. Aronson, B. E. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35, 43–53 (1998).
[CrossRef]

Berra, P. B.

S. Akyokus, P. B. Berra, “A 3-D optical database machine,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 543–551.
[CrossRef]

Beyette, F. R.

Bhat, R.

J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991).
[CrossRef]

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

J. B. D. Soole, H. LeBlanc, N. Andreadakis, R. Bhat, C. Caneau, M. Koza, “Monolithic InP reflection-grating multiplexer/demultiplexers for WDM components operating in the long wavelength fiber band,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 111–133.
[CrossRef]

Bissessur, H.

H. Bissessur, F. Gaborit, B. Martin, G. Ripoche, “Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance,” Electron. Lett. 31, 1372–1373 (1995).
[CrossRef]

Bjorklund, G.

Bloemer, M. J.

M. J. Bloemer, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619–1621 (1992).
[CrossRef]

Caneau, C.

R. J. Deri, R. Hawkins, C. Caneau, E. Pennings, N. Andreadakis, “Ultracompact monolithic integration of polarization diversity waveguide/photodiodes,” Appl. Phys. Lett. 59, 1823–1825 (1991).
[CrossRef]

J. B. D. Soole, H. LeBlanc, N. Andreadakis, R. Bhat, C. Caneau, M. Koza, “Monolithic InP reflection-grating multiplexer/demultiplexers for WDM components operating in the long wavelength fiber band,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 111–133.
[CrossRef]

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, “The progress and performance of long wavelength OEIC photoreceivers incorporating heterojunction bipolar transistors,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 45–65.
[CrossRef]

Choo, P. Y.

P. Y. Choo, A. Detofsky, A. Louri, “Multiwavelength optical content-addressable parallel processor for high-speed parallel relational database processing,” Appl. Opt 38, 5594–5604 (1999).
[CrossRef]

A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “An optical, architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” Optics in Computing ‘98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multi-wavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.

Coldren, L.

L. Coldren, S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

Corazza, D.

B. P. Keyworth, D. Corazza, J. McMullin, “Low-cost pigtailing of vertical cavity surface emitting laser arrays,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 361–366.
[CrossRef]

Corzine, S.

L. Coldren, S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

Curtis, L.

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Deri, R. J.

R. J. Deri, R. Hawkins, C. Caneau, E. Pennings, N. Andreadakis, “Ultracompact monolithic integration of polarization diversity waveguide/photodiodes,” Appl. Phys. Lett. 59, 1823–1825 (1991).
[CrossRef]

R. J. Deri, “Impedance matching for enhanced waveguide/photodetector integration,” Appl. Phys. Lett. 55, 2712–2714 (1989).
[CrossRef]

Detofsky, A.

P. Y. Choo, A. Detofsky, A. Louri, “Multiwavelength optical content-addressable parallel processor for high-speed parallel relational database processing,” Appl. Opt 38, 5594–5604 (1999).
[CrossRef]

A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “An optical, architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” Optics in Computing ‘98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.

P. Y. Choo, A. Detofsky, A. Louri, “A multi-wavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
[CrossRef]

Favire, F.

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Feld, S. A.

Fidorra, F.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28, 565–573 (1996).
[CrossRef]

Gaborit, F.

H. Bissessur, F. Gaborit, B. Martin, G. Ripoche, “Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance,” Electron. Lett. 31, 1372–1373 (1995).
[CrossRef]

Gamelin, J.

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Giboney, K. S.

K. S. Giboney, L. B. Aronson, B. E. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35, 43–53 (1998).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), pp. 232–295.

Guilfoyle, P. S.

P. S. Guilfoyle, R. V. Stone, “Digital optical computer II,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 214–222 (1991).
[CrossRef]

Hamacher, M.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28, 565–573 (1996).
[CrossRef]

Hatch, J.

A. Louri, J. Hatch, “An optical content-addressable parallel processor for high-speed database processing: theoretical concepts and experimental results, Special Issue on Associative Processors,” IEEE Comput. 27(11), 65–72 (1994).

A. Louri, J. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8164 (1994).
[CrossRef] [PubMed]

Hawkins, R.

R. J. Deri, R. Hawkins, C. Caneau, E. Pennings, N. Andreadakis, “Ultracompact monolithic integration of polarization diversity waveguide/photodiodes,” Appl. Phys. Lett. 59, 1823–1825 (1991).
[CrossRef]

Heidrich, H.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28, 565–573 (1996).
[CrossRef]

Hermes, T.

U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995).
[CrossRef]

Hilbk, U.

U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995).
[CrossRef]

Hinton, H.

Hwang, W.-Y.

W.-Y. Hwang, “TE–TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron. 32, 1054–1062 (1996).
[CrossRef]

Irakliotis, L. J.

Izutsu, M.

Jacumeit, C.

U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995).
[CrossRef]

Jurich, M. C.

Kaiser, R.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28, 565–573 (1996).
[CrossRef]

Keyworth, B. P.

B. P. Keyworth, D. Corazza, J. McMullin, “Low-cost pigtailing of vertical cavity surface emitting laser arrays,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 361–366.
[CrossRef]

Koza, M.

J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991).
[CrossRef]

J. B. D. Soole, H. LeBlanc, N. Andreadakis, R. Bhat, C. Caneau, M. Koza, “Monolithic InP reflection-grating multiplexer/demultiplexers for WDM components operating in the long wavelength fiber band,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 111–133.
[CrossRef]

Leblanc, H.

J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991).
[CrossRef]

J. B. D. Soole, H. LeBlanc, N. Andreadakis, R. Bhat, C. Caneau, M. Koza, “Monolithic InP reflection-grating multiplexer/demultiplexers for WDM components operating in the long wavelength fiber band,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 111–133.
[CrossRef]

Lee, T.

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Lemoff, B. E.

K. S. Giboney, L. B. Aronson, B. E. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35, 43–53 (1998).
[CrossRef]

Lin, P.

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Louri, A.

P. Y. Choo, A. Detofsky, A. Louri, “Multiwavelength optical content-addressable parallel processor for high-speed parallel relational database processing,” Appl. Opt 38, 5594–5604 (1999).
[CrossRef]

A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998).
[CrossRef]

A. Louri, J. Hatch, “An optical content-addressable parallel processor for high-speed database processing: theoretical concepts and experimental results, Special Issue on Associative Processors,” IEEE Comput. 27(11), 65–72 (1994).

A. Louri, J. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8164 (1994).
[CrossRef] [PubMed]

A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).
[CrossRef] [PubMed]

P. Y. Choo, A. Detofsky, A. Louri, “An optical, architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” Optics in Computing ‘98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multi-wavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.

Mahoney, D.

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Martin, B.

H. Bissessur, F. Gaborit, B. Martin, G. Ripoche, “Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance,” Electron. Lett. 31, 1372–1373 (1995).
[CrossRef]

McMullin, J.

B. P. Keyworth, D. Corazza, J. McMullin, “Low-cost pigtailing of vertical cavity surface emitting laser arrays,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 361–366.
[CrossRef]

Meissner, P.

U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995).
[CrossRef]

Mitkas, P. A.

Nakai, Y.

Page, R. H.

Pathak, B.

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Pennings, E.

R. J. Deri, R. Hawkins, C. Caneau, E. Pennings, N. Andreadakis, “Ultracompact monolithic integration of polarization diversity waveguide/photodiodes,” Appl. Phys. Lett. 59, 1823–1825 (1991).
[CrossRef]

Quillec, M.

M. Quillec, Materials for Optoelectronics (Kluwer, New York, 1996).
[CrossRef]

Reck, B.

Ripoche, G.

H. Bissessur, F. Gaborit, B. Martin, G. Ripoche, “Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance,” Electron. Lett. 31, 1372–1373 (1995).
[CrossRef]

Scherer, A.

J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991).
[CrossRef]

Sen, A.

Soole, J. B. D.

J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991).
[CrossRef]

J. B. D. Soole, H. LeBlanc, N. Andreadakis, R. Bhat, C. Caneau, M. Koza, “Monolithic InP reflection-grating multiplexer/demultiplexers for WDM components operating in the long wavelength fiber band,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 111–133.
[CrossRef]

Stentel, R.

U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995).
[CrossRef]

Stone, R. V.

P. S. Guilfoyle, R. V. Stone, “Digital optical computer II,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 214–222 (1991).
[CrossRef]

Sueta, T.

Swalen, J.

Szymanski, T.

Trommer, D.

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28, 565–573 (1996).
[CrossRef]

Twieg, R.

Unterborsch, G.

U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995).
[CrossRef]

Usami, M.

S. Akiba, M. Usami, K. Utaka, “1.5-µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol. LT-5, 1564–1573 (1987).
[CrossRef]

Utaka, K.

S. Akiba, M. Usami, K. Utaka, “1.5-µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol. LT-5, 1564–1573 (1987).
[CrossRef]

Wilmsen, C. W.

Wilson, C.

Young, W.

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Zah, C. E.

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

Appl. Opt (1)

P. Y. Choo, A. Detofsky, A. Louri, “Multiwavelength optical content-addressable parallel processor for high-speed parallel relational database processing,” Appl. Opt 38, 5594–5604 (1999).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

M. J. Bloemer, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619–1621 (1992).
[CrossRef]

R. J. Deri, R. Hawkins, C. Caneau, E. Pennings, N. Andreadakis, “Ultracompact monolithic integration of polarization diversity waveguide/photodiodes,” Appl. Phys. Lett. 59, 1823–1825 (1991).
[CrossRef]

R. J. Deri, “Impedance matching for enhanced waveguide/photodetector integration,” Appl. Phys. Lett. 55, 2712–2714 (1989).
[CrossRef]

Electron. Lett. (2)

J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991).
[CrossRef]

H. Bissessur, F. Gaborit, B. Martin, G. Ripoche, “Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance,” Electron. Lett. 31, 1372–1373 (1995).
[CrossRef]

IEEE Comput. (1)

A. Louri, J. Hatch, “An optical content-addressable parallel processor for high-speed database processing: theoretical concepts and experimental results, Special Issue on Associative Processors,” IEEE Comput. 27(11), 65–72 (1994).

IEEE J. Quantum Electron. (1)

W.-Y. Hwang, “TE–TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron. 32, 1054–1062 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995).
[CrossRef]

IEEE Spectrum (1)

K. S. Giboney, L. B. Aronson, B. E. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35, 43–53 (1998).
[CrossRef]

J. Lightwave Technol. (1)

S. Akiba, M. Usami, K. Utaka, “1.5-µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol. LT-5, 1564–1573 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28, 565–573 (1996).
[CrossRef]

Other (15)

Prometheus Users Manual, Version 3.1 (BBV Software, Enschede, The Netherlands, 1999).

ASAP Advanced Tutorial, Version 6.5 (Breault Research Organization, Tucson, Ariz., 1999).

C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109.
[CrossRef]

J. B. D. Soole, H. LeBlanc, N. Andreadakis, R. Bhat, C. Caneau, M. Koza, “Monolithic InP reflection-grating multiplexer/demultiplexers for WDM components operating in the long wavelength fiber band,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 111–133.
[CrossRef]

L. Coldren, S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

S. Chandrasekhar, “The progress and performance of long wavelength OEIC photoreceivers incorporating heterojunction bipolar transistors,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 45–65.
[CrossRef]

P. S. Guilfoyle, R. V. Stone, “Digital optical computer II,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 214–222 (1991).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multi-wavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.

P. Y. Choo, A. Detofsky, A. Louri, “An optical, architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” Optics in Computing ‘98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
[CrossRef]

S. Akyokus, P. B. Berra, “A 3-D optical database machine,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 543–551.
[CrossRef]

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), pp. 232–295.

M. Quillec, Materials for Optoelectronics (Kluwer, New York, 1996).
[CrossRef]

European Commission, “Optoelectronic interconnects for integrated circuits,” in Technology Roadmap [Microelectronics Advanced Research Initiative, European Strategic Program on Research in Information Technology (ESPRIT), June1998].

B. P. Keyworth, D. Corazza, J. McMullin, “Low-cost pigtailing of vertical cavity surface emitting laser arrays,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 361–366.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Part 1 of the MW-OCAPP’s equivalency system schematic. (b) EP3IC’s waveguide equivalent. DFB, distributed- feedback laser; P, polarizer; LP, light plane.

Fig. 2
Fig. 2

(a) Electrode placement on the electro-optic modulator cross section. (b) The rib waveguide cross section. Waveguide core material, InGaAsP.

Fig. 3
Fig. 3

(a) Part 2 of the MW-OCAPP’s equivalency system schematic. (b) EP3IC’s waveguide equivalent. The first state in the logic pairs following the Y splitter corresponds to λ1, and the second state in the pairs corresponds to λ2.

Fig. 4
Fig. 4

(a) Part 3 of the MW-OCAPP’s equivalency system schematic. (b) The EP3IC’s waveguide equivalent. The dashes following the polarization filter indicate the absence of light for a particular wavelength in a guide.

Fig. 5
Fig. 5

The MW-OCAPP’s equality demonstration system.

Fig. 6
Fig. 6

Multimode waveguide cross section. Core material, InGaAsP.

Fig. 7
Fig. 7

(a) Schematic of the integrated p-i-n photodetector. (b) The optical intensity as the light propagates through the device (Prometheus simulation).

Fig. 8
Fig. 8

EP3IC layout for a configuration consisting of two RA words, two CA words, and 2 bits/word (ASAP model).

Fig. 9
Fig. 9

Functional layout of EP3IC’s generalized monolithic equality-processing core, given m CA words, q RA words, and n bits/word. Mux, multiplexer; Demux, demultiplexer.

Fig. 10
Fig. 10

Analytically derived SNR, photocurrent, and noise currents as functions of the incident optical power. A minimum SNR of 2 requires a power of 1 µW at the photodetector.

Fig. 11
Fig. 11

(a) Proposed interchip I/O communication layout with fiber interconnects. (b) A waveguide mirror coupler could be used to realize free-space optical interconnects between the EP3IC processor and other components. This setup is ideally suited for high-speed parallel interfacing with optical memory, such as in a page-oriented volume hologram.

Tables (2)

Tables Icon

Table 1 Worst-Case Power Loss Analysis

Tables Icon

Table 2 EP3IC Performance Summary

Metrics