Abstract

A new, to our knowledge, approach for the planar integration of optical correlators is demonstrated. A VanderLugt-type architecture was used to allow the processing of the spatially incoherent signals of active optoelectronic smart-pixel-device arrays. In a folded optical system all passive components were implemented as a single multiple-phase-level element. The relations among the spatial resolution, the light efficiency, and the system design parameters are derived. High signal quality and low noise levels were achieved experimentally.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 33, 1602–1605 (1989).
    [Crossref]
  2. H. S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Select. Topics Commun. 6, 1209–1226 (1988).
    [Crossref]
  3. C. S. Weaver, J. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [Crossref] [PubMed]
  4. A. K. Ghosh, M. B. Lapis, D. Aossey, “Planar integration of joint transform correlators,” Electron. Lett. 27, 871–872 (1991).
    [Crossref]
  5. S. Reinhorn, Y. Amitai, A. A. Friesem, “Compact planar optical correlator,” Opt. Lett. 22, 925–927 (1997).
    [Crossref] [PubMed]
  6. S. H. Song, J.-S. Jeong, S. Park, E.-H. Lee, “Planar optical implementation of fractional correlation,” Opt. Commun. 143, 287–293 (1997).
    [Crossref]
  7. A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  8. K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–238 (1994).
    [Crossref]
  9. W. Eckert, K.-H. Brenner, C. Passon, “Planar integration of free-space micro-optical systems with refractive elements,” in Optical Computing 1994, B. S. Wherrett, P. Chavel, eds., IOP Conf. Ser.139, 263–266 (1994).
  10. C. Gimkiewicz, J. Jahns, “Thermal management in planar optical systems with active components,” in Microelectronic Structures and MEMS for Optical Processing III, M. Motamedi, H. P. Herzig, eds., Proc. SPIE3226, 56–66 (1997).
    [Crossref]
  11. K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.
  12. J. Jahns, “Diffractive optical elements for optical computers,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, San Diego, Calif., 1994), pp. 137–167.
  13. V. Arrizón, M. Testorf, “Efficiency limit of spatially quantized Fourier array illuminators,” Opt. Lett. 22, 197–199 (1997).
    [Crossref]
  14. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  15. J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performance,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

1997 (3)

1994 (1)

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–238 (1994).
[Crossref]

1991 (1)

A. K. Ghosh, M. B. Lapis, D. Aossey, “Planar integration of joint transform correlators,” Electron. Lett. 27, 871–872 (1991).
[Crossref]

1989 (1)

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 33, 1602–1605 (1989).
[Crossref]

1988 (1)

H. S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Select. Topics Commun. 6, 1209–1226 (1988).
[Crossref]

1972 (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

1966 (1)

1964 (1)

A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Amitai, Y.

Aossey, D.

A. K. Ghosh, M. B. Lapis, D. Aossey, “Planar integration of joint transform correlators,” Electron. Lett. 27, 871–872 (1991).
[Crossref]

Arrizón, V.

Brenner, K.-H.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–238 (1994).
[Crossref]

W. Eckert, K.-H. Brenner, C. Passon, “Planar integration of free-space micro-optical systems with refractive elements,” in Optical Computing 1994, B. S. Wherrett, P. Chavel, eds., IOP Conf. Ser.139, 263–266 (1994).

Chirovsky, L. M. F.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Cox, J. A.

J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performance,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

D’Asaro, L. A.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Dahringer, D.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Eckert, W.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–238 (1994).
[Crossref]

W. Eckert, K.-H. Brenner, C. Passon, “Planar integration of free-space micro-optical systems with refractive elements,” in Optical Computing 1994, B. S. Wherrett, P. Chavel, eds., IOP Conf. Ser.139, 263–266 (1994).

Friesem, A. A.

Fritz, B.

J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performance,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Ghosh, A. K.

A. K. Ghosh, M. B. Lapis, D. Aossey, “Planar integration of joint transform correlators,” Electron. Lett. 27, 871–872 (1991).
[Crossref]

Gimkiewicz, C.

C. Gimkiewicz, J. Jahns, “Thermal management in planar optical systems with active components,” in Microelectronic Structures and MEMS for Optical Processing III, M. Motamedi, H. P. Herzig, eds., Proc. SPIE3226, 56–66 (1997).
[Crossref]

Goodman, J.

Goosen, K. W.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Hinton, H. S.

H. S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Select. Topics Commun. 6, 1209–1226 (1988).
[Crossref]

Huang, A.

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 33, 1602–1605 (1989).
[Crossref]

Hui, S. P.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Jahns, J.

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 33, 1602–1605 (1989).
[Crossref]

J. Jahns, “Diffractive optical elements for optical computers,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, San Diego, Calif., 1994), pp. 137–167.

C. Gimkiewicz, J. Jahns, “Thermal management in planar optical systems with active components,” in Microelectronic Structures and MEMS for Optical Processing III, M. Motamedi, H. P. Herzig, eds., Proc. SPIE3226, 56–66 (1997).
[Crossref]

Jeong, J.-S.

S. H. Song, J.-S. Jeong, S. Park, E.-H. Lee, “Planar optical implementation of fractional correlation,” Opt. Commun. 143, 287–293 (1997).
[Crossref]

Kossives, D.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Lapis, M. B.

A. K. Ghosh, M. B. Lapis, D. Aossey, “Planar integration of joint transform correlators,” Electron. Lett. 27, 871–872 (1991).
[Crossref]

Lee, E.-H.

S. H. Song, J.-S. Jeong, S. Park, E.-H. Lee, “Planar optical implementation of fractional correlation,” Opt. Commun. 143, 287–293 (1997).
[Crossref]

Leibenguth, R.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Lentine, A. L.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Miller, D. A. B.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Park, S.

S. H. Song, J.-S. Jeong, S. Park, E.-H. Lee, “Planar optical implementation of fractional correlation,” Opt. Commun. 143, 287–293 (1997).
[Crossref]

Passon, C.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–238 (1994).
[Crossref]

W. Eckert, K.-H. Brenner, C. Passon, “Planar integration of free-space micro-optical systems with refractive elements,” in Optical Computing 1994, B. S. Wherrett, P. Chavel, eds., IOP Conf. Ser.139, 263–266 (1994).

Reinhorn, S.

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Song, S. H.

S. H. Song, J.-S. Jeong, S. Park, E.-H. Lee, “Planar optical implementation of fractional correlation,” Opt. Commun. 143, 287–293 (1997).
[Crossref]

Testorf, M.

Tseng, B.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

VanderLugt, A. B.

A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Walker, J. A.

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

Weaver, C. S.

Werner, T.

J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performance,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

Appl. Opt. (2)

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 33, 1602–1605 (1989).
[Crossref]

C. S. Weaver, J. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
[Crossref] [PubMed]

Electron. Lett. (1)

A. K. Ghosh, M. B. Lapis, D. Aossey, “Planar integration of joint transform correlators,” Electron. Lett. 27, 871–872 (1991).
[Crossref]

IEEE J. Select. Topics Commun. (1)

H. S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Select. Topics Commun. 6, 1209–1226 (1988).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Opt. Commun. (1)

S. H. Song, J.-S. Jeong, S. Park, E.-H. Lee, “Planar optical implementation of fractional correlation,” Opt. Commun. 143, 287–293 (1997).
[Crossref]

Opt. Laser Technol. (1)

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–238 (1994).
[Crossref]

Opt. Lett. (2)

Optik (Stuttgart) (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Other (5)

J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performance,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991).

W. Eckert, K.-H. Brenner, C. Passon, “Planar integration of free-space micro-optical systems with refractive elements,” in Optical Computing 1994, B. S. Wherrett, P. Chavel, eds., IOP Conf. Ser.139, 263–266 (1994).

C. Gimkiewicz, J. Jahns, “Thermal management in planar optical systems with active components,” in Microelectronic Structures and MEMS for Optical Processing III, M. Motamedi, H. P. Herzig, eds., Proc. SPIE3226, 56–66 (1997).
[Crossref]

K. W. Goosen, A. L. Lentine, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “Demonstration of a dense, high-speed optoelectronic technology integrated with silicon CMOS via flip-chip bonding and substrate removal,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 142–144.

J. Jahns, “Diffractive optical elements for optical computers,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, San Diego, Calif., 1994), pp. 137–167.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical setup of a VanderLugt correlator.

Fig. 2
Fig. 2

Compact, folded VanderLugt correlator with interlaced I/O planes.

Fig. 3
Fig. 3

Integrated correlator with the correlation filter and lens L1 combined as a reflective DOE.

Fig. 4
Fig. 4

Quantification of the efficiency and the noise in a blazed multilevel phase grating.

Fig. 5
Fig. 5

Spectral component of periodic Fourier filters: (a) separation ΔY of the diffraction orders in the output plane, (b) diffraction orders modulated with the Fourier transform of the aperture width a, (c) PSF of the periodically repeated filter, (d) PSF of the correlator that results from the product of the functions shown in (a)–(c).

Fig. 6
Fig. 6

Phase distribution in the center of a DOE as derived from combining the periodically replicated filter phase with the phase distribution of the lens.

Fig. 7
Fig. 7

Single quartz substrate used with the integrated systems.

Fig. 8
Fig. 8

Measurement setup used to characterize the integrated systems.

Fig. 9
Fig. 9

PSF of an integrated correlator: (a) inverted and overexposed CCD image and (b) line scans through the diffraction orders.

Fig. 10
Fig. 10

Results of the correlation experiments: line scans, integrated orders, and expected values for (a) an input signal identical to the reference signal but rotated by 180° [s(x, y) = r(-x, -y)] and (b) identical input and reference signals [s(x, y) = r(x, y)].

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

FouFμ, ν=r*-x, -y.
ox, y=ij sij|r*-x-xi, -y-yj|2.
νL=2rλf.
NA=n sinα=n A2f.
νL max=2 NAλn.
pλnNA.
νF max=Wrλf.
aλn4sNA+Wrn2f.
f2WrnNA.
aλn5sNA.

Metrics