Abstract

A comparison of numerical analyses with experimental measurements suggests that both the ray-tracing and the Gaussian beam-propagation models overestimate the misalignment tolerances for on-axis beams and fail to predict the large longitudinal focal shift that occurs for off-axis beams propagating in free-space optical interconnects.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Physical reasons for optical interconnections,” Int. J. Optoelectron. 11, 155–168 (1997).
  2. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Select. Topics Quantum Electron. 2, 3–13 (1996).
    [CrossRef]
  3. D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
    [CrossRef] [PubMed]
  4. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 3.
    [CrossRef]
  5. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
    [CrossRef]
  6. A. McCarthy, F. A. P. Tooley, B. Robertson, J. M. Miller, “Broken symmetry interconnects for microchannel relay systems,” in Proceedings of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 11–13.
  7. D. T. Nelson, “Tolerance of optical interconnections to misalignment,” Appl. Opt. 38, 2282–2290 (1999).
    [CrossRef]
  8. S. P. Levitan, T. P. Kurzweg, P. J. Marchand, M. A. Rempel, D. M. Chiarulli, J. A. Martinez, J. M. Bridgen, C. Fan, F. B. McCormick, “Chatoyant: a computer-aided-design tool for free-space optoelectronic systems,” Appl. Opt. 37, 6078–6092 (1998).
    [CrossRef]
  9. P. Belland, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
    [CrossRef] [PubMed]
  10. K. Tanaka, O. Kanzaki, “Focus of a diffracted Gaussian beam through a finite aperture lens: experimental and numerical investigations,” Appl. Opt. 26, 390–395 (1987).
    [CrossRef] [PubMed]
  11. R. R. Shannon, The Art and Science of Optical Design (Cambridge U. Press, Cambridge, 1997), Chap. 2.
    [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chaps. 3 and 4.
  13. B. Robertson, “Design of an optical interconnect for photonic backplane applications,” Appl. Opt. 37, 2974–2984 (1998).
    [CrossRef]
  14. Y. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
    [CrossRef] [PubMed]
  15. S. De Nicola, D. Anderson, M. Lisak, “Focal shift effects in diffracted focused beams,” Pure Appl. Opt. 7, 1249–1269 (1998).
    [CrossRef]
  16. Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
    [CrossRef]

1999 (1)

1998 (3)

1997 (2)

1996 (3)

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Select. Topics Quantum Electron. 2, 3–13 (1996).
[CrossRef]

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

1987 (1)

1982 (1)

1981 (1)

Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
[CrossRef]

Anderson, D.

S. De Nicola, D. Anderson, M. Lisak, “Focal shift effects in diffracted focused beams,” Pure Appl. Opt. 7, 1249–1269 (1998).
[CrossRef]

Belland, P.

Bridgen, J. M.

Chiarulli, D. M.

Chirovsky, L. M. F.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Crenn, J. P.

Cunningham, J. E.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

D’Asaro, L. A.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Dahringer, D.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

De Nicola, S.

S. De Nicola, D. Anderson, M. Lisak, “Focal shift effects in diffracted focused beams,” Pure Appl. Opt. 7, 1249–1269 (1998).
[CrossRef]

Fan, C.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chaps. 3 and 4.

Goosen, K. W.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Hinton, H. S.

Hui, S. P.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Jan, W. Y.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Kanzaki, O.

Kossives, D.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Krishnamoorthy, A. V.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Kurzweg, T. P.

Leibenguth, R. E.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Lentine, A. L.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Levitan, S. P.

Li, Y.

Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
[CrossRef]

Lisak, M.

S. De Nicola, D. Anderson, M. Lisak, “Focal shift effects in diffracted focused beams,” Pure Appl. Opt. 7, 1249–1269 (1998).
[CrossRef]

Liu, Y.

Marchand, P. J.

Martinez, J. A.

McCarthy, A.

A. McCarthy, F. A. P. Tooley, B. Robertson, J. M. Miller, “Broken symmetry interconnects for microchannel relay systems,” in Proceedings of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 11–13.

McCormick, F. B.

Miller, D. A. B.

D. A. B. Miller, “Physical reasons for optical interconnections,” Int. J. Optoelectron. 11, 155–168 (1997).

Miller, J. M.

A. McCarthy, F. A. P. Tooley, B. Robertson, J. M. Miller, “Broken symmetry interconnects for microchannel relay systems,” in Proceedings of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 11–13.

Nelson, D. T.

Plant, D. V.

Rempel, M. A.

Robertson, B.

Robertson, W. M.

Rolston, D. R.

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 3.
[CrossRef]

Shannon, R. R.

R. R. Shannon, The Art and Science of Optical Design (Cambridge U. Press, Cambridge, 1997), Chap. 2.
[CrossRef]

Tanaka, K.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 3.
[CrossRef]

Tooley, F. A. P.

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Select. Topics Quantum Electron. 2, 3–13 (1996).
[CrossRef]

A. McCarthy, F. A. P. Tooley, B. Robertson, J. M. Miller, “Broken symmetry interconnects for microchannel relay systems,” in Proceedings of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 11–13.

Tseng, B.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Walker, J. A.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Wolf, E.

Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
[CrossRef]

Woodward, T. K.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Appl. Opt. (7)

IEEE J. Select. Topics Quantum Electron. (1)

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Select. Topics Quantum Electron. 2, 3–13 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goosen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Int. J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnections,” Int. J. Optoelectron. 11, 155–168 (1997).

Opt. Commun. (1)

Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
[CrossRef]

Pure Appl. Opt. (1)

S. De Nicola, D. Anderson, M. Lisak, “Focal shift effects in diffracted focused beams,” Pure Appl. Opt. 7, 1249–1269 (1998).
[CrossRef]

Other (4)

A. McCarthy, F. A. P. Tooley, B. Robertson, J. M. Miller, “Broken symmetry interconnects for microchannel relay systems,” in Proceedings of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 11–13.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 3.
[CrossRef]

R. R. Shannon, The Art and Science of Optical Design (Cambridge U. Press, Cambridge, 1997), Chap. 2.
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chaps. 3 and 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of a typical implementation of a board-to-board free-space optical interconnect. This system is telecentric. It guides a beam that is emitted from a source on one PCB to a detector on a second PCB through microlens-array relays.

Fig. 2
Fig. 2

Schematic diagram of the concept of clustering: multiple beams are grouped about the optical axis of each minilens in the system’s minilens arrays.

Fig. 3
Fig. 3

Schematic diagram of the proposed interconnect design: A point-to-point link is generated between the modulators in stage 1 and the detectors in stage 2. There is a total of 512 optical beams. The minilens arrays have dimensions of 800 µm × 800 µm and an 8.5-mm focal length.

Fig. 4
Fig. 4

Left-hand side: The beam footprint at the microlenses for a beam intensity of 99% from a single 4 × 4 cluster array. Right-hand side: The diffraction-efficiency profile showing variation of the diffraction efficiency over the radius of the minilenses. Misalignment of the minilens array causes clipping of the beam energy.

Fig. 5
Fig. 5

Schematic of the experimental setup for measuring lateral and longitudinal misalignments.

Fig. 6
Fig. 6

On-axis experimentally measured data: Plot of the throughput versus the lateral misalignment in XY of the first minilens array.

Fig. 7
Fig. 7

Comparison of the experimentally measured and the model-derived numerical on-axis data: Plot of the throughput versus the lateral misalignment in X of the first minilens array.

Fig. 8
Fig. 8

On-axis experimentally measured data: Plot of the throughput versus the lateral in X and the longitudinal in Z misalignments of the first minilens array.

Fig. 9
Fig. 9

Comparison of the experimentally measured and the model-derived numerical on-axis data: Plot of the throughput versus the longitudinal in Z misalignment of the first minilens array.

Fig. 10
Fig. 10

Off-axis experimentally measured data: Plot of the throughput versus the lateral misalignment in XY of the first minilens array.

Fig. 11
Fig. 11

Comparison of the experimentally measured and the model-derived numerical off-axis data: Plot of the throughput versus the lateral misalignment in X of the first minilens array.

Fig. 12
Fig. 12

Off-axis experimentally measured data: Plot of the throughput versus the lateral in X and the longitudinal in Z misalignments of the first minilens array.

Fig. 13
Fig. 13

Comparison of the experimentally measured and the model-derived numerical off-axis data: Plot of the throughput versus the longitudinal in Z misalignment of the first minilens array.

Tables (2)

Tables Icon

Table 1 Summary of the Properties of the Numerical Models

Tables Icon

Table 2 Summary of the Tolerancing Results

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Iρ, z=I0ω0ωz2 exp-2ρ2ω2z,
P=I0-a1-Δxa2-Δx-b1-Δyb2-Δyω0ωz2 exp-2x2+y2ω2zdxdy,
Ux0, y0= Hx0, y0; x1, y1Ux1, y1dx1dy1,

Metrics