Abstract

Through five experiments, we demonstrate and characterize the basic functionality of imaging fiber bundles for optoelectronic chip-level interconnections. We demonstrate the transmission of spot arrays with spot sizes and a spot pitch roughly equal to 2 and 4 times the core pitch, respectively. We show that optoelectronic integrated circuits, including sources and detectors, can be butt coupled directly to fiber bundles without any additional optical elements. We demonstrate a 16-channel interconnect with -23 dB of cross talk, and we characterize the most significant optical loss mechanism. Finally, we show how imaging fiber bundles can be used to implement more complex interconnection structures by an example of a hybrid-bonded structure that implements a low-cost, high-connectivity solution for more advanced system architectures.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Chiarulli, S. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 112–115.
  2. D. Chiarulli, S. Levitan, R. Melhem, J. Teza, G. Gravenstreter, “Partitioned optical passive star (POPS) interconnection networks with distributed control,” J. Lightwave Technol. 14, 1601–1612 (1996).
    [CrossRef]
  3. A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Verma, “Optical crossbar networks,” IEEE Comput. 20, 50–60 (1987).
    [CrossRef]
  4. See the web site http://co-op.gmu.edu .
  5. Y. Liu, “Smart pixel module development for free-space optical interconnect,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 528–531 (1998).
    [CrossRef]

1996

D. Chiarulli, S. Levitan, R. Melhem, J. Teza, G. Gravenstreter, “Partitioned optical passive star (POPS) interconnection networks with distributed control,” J. Lightwave Technol. 14, 1601–1612 (1996).
[CrossRef]

1987

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Verma, “Optical crossbar networks,” IEEE Comput. 20, 50–60 (1987).
[CrossRef]

Chiarulli, D.

D. Chiarulli, S. Levitan, R. Melhem, J. Teza, G. Gravenstreter, “Partitioned optical passive star (POPS) interconnection networks with distributed control,” J. Lightwave Technol. 14, 1601–1612 (1996).
[CrossRef]

D. Chiarulli, S. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 112–115.

Derr, P.

D. Chiarulli, S. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 112–115.

Gravenstreter, G.

D. Chiarulli, S. Levitan, R. Melhem, J. Teza, G. Gravenstreter, “Partitioned optical passive star (POPS) interconnection networks with distributed control,” J. Lightwave Technol. 14, 1601–1612 (1996).
[CrossRef]

Greiner, B.

D. Chiarulli, S. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 112–115.

Jenkins, B. K.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Verma, “Optical crossbar networks,” IEEE Comput. 20, 50–60 (1987).
[CrossRef]

Levitan, S.

D. Chiarulli, S. Levitan, R. Melhem, J. Teza, G. Gravenstreter, “Partitioned optical passive star (POPS) interconnection networks with distributed control,” J. Lightwave Technol. 14, 1601–1612 (1996).
[CrossRef]

D. Chiarulli, S. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 112–115.

Liu, Y.

Y. Liu, “Smart pixel module development for free-space optical interconnect,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 528–531 (1998).
[CrossRef]

Melhem, R.

D. Chiarulli, S. Levitan, R. Melhem, J. Teza, G. Gravenstreter, “Partitioned optical passive star (POPS) interconnection networks with distributed control,” J. Lightwave Technol. 14, 1601–1612 (1996).
[CrossRef]

Menon, R.

D. Chiarulli, S. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 112–115.

Raghavendra, C. S.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Verma, “Optical crossbar networks,” IEEE Comput. 20, 50–60 (1987).
[CrossRef]

Robinson, M.

D. Chiarulli, S. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 112–115.

Sawchuck, A. A.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Verma, “Optical crossbar networks,” IEEE Comput. 20, 50–60 (1987).
[CrossRef]

Teza, J.

D. Chiarulli, S. Levitan, R. Melhem, J. Teza, G. Gravenstreter, “Partitioned optical passive star (POPS) interconnection networks with distributed control,” J. Lightwave Technol. 14, 1601–1612 (1996).
[CrossRef]

Verma, A.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Verma, “Optical crossbar networks,” IEEE Comput. 20, 50–60 (1987).
[CrossRef]

Wattanapongsakorn, N.

D. Chiarulli, S. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 112–115.

IEEE Comput.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Verma, “Optical crossbar networks,” IEEE Comput. 20, 50–60 (1987).
[CrossRef]

J. Lightwave Technol.

D. Chiarulli, S. Levitan, R. Melhem, J. Teza, G. Gravenstreter, “Partitioned optical passive star (POPS) interconnection networks with distributed control,” J. Lightwave Technol. 14, 1601–1612 (1996).
[CrossRef]

Other

D. Chiarulli, S. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 112–115.

See the web site http://co-op.gmu.edu .

Y. Liu, “Smart pixel module development for free-space optical interconnect,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 528–531 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

FIG cores in a hexagonal lattice with 11-µm spots on a 15-µm pitch.

Fig. 2
Fig. 2

Two-millimeter fiber-bundle output of a 6 × 10 (62.5 µm × 125 µm pitch) spot array.

Fig. 3
Fig. 3

Photograph of a fiber bundle butt coupled to an OE chip.

Fig. 4
Fig. 4

Frame sequence of the output of a butt-coupled 4 × 4 VCSEL array.

Fig. 5
Fig. 5

Point-to-point VCSEL array setup showing interleaved source–detector arrays.

Fig. 6
Fig. 6

Data output from a 15-channel interconnect. The units are 50 mV/division (vertical coordinate) versus 50 µs/division (horizontal coordinate).

Fig. 7
Fig. 7

Cross-talk test for a 16-channel link. The units are 50 mV/division (vertical coordinate) versus 50 µs/division (horizontal coordinate).

Fig. 8
Fig. 8

Transmitted optical power plotted versus the xyz position for a 200-µm spot.

Fig. 9
Fig. 9

Schematic of a 3 × 3 passive switch.

Fig. 10
Fig. 10

Photograph of a 3 × 3 core element.

Metrics