Abstract

Ultrasound-modulated optical tomography in biological tissue was studied both theoretically and experimentally. An ultrasonic beam was focused into biological tissue samples to modulate the laser light passing through the ultrasonic beam inside the tissue. The ultrasound-modulated laser light reflects the local optical and mechanical properties in the ultrasonic beam and permits tomographic imaging of biological tissues by scanning. Parallel detection of the speckle field formed by the transmitted laser light was implemented with the source-synchronous-illumination lock-in technique to improve the signal-to-noise ratio. Two-dimensional images of biological tissues were successfully obtained experimentally with a laser beam at either normal or oblique incidence, which showed that ultrasound-modulated optical tomography depends on diffuse light rather than on ballistic light. Monte Carlo simulations showed that the modulation depth decreased much more slowly than the diffuse transmittance, which indicated the possibility that even thicker biological tissues can be imaged with this technique.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  2. B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).
  3. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 9, 311–313 (1994).
    [CrossRef]
  4. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef] [PubMed]
  5. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
    [CrossRef] [PubMed]
  6. R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).
  7. A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
    [CrossRef]
  8. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  9. L.-H. Wang, Q. Shen, “Sonoluminescence tomography of turbid media,” Opt. Lett. 23, 561–563 (1998).
    [CrossRef]
  10. F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
    [CrossRef]
  11. L.-H. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [CrossRef] [PubMed]
  12. L.-H. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  13. M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
    [CrossRef]
  14. L.-H. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998).
    [CrossRef]
  15. S. Leveque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  16. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
    [CrossRef]
  17. L.-H. Wang, “Ultrasonic modulation of scattered light in turbid media and a potential novel tomography in biomedicine,” Photochem. Photobiol. 67, 41–49 (1998).
    [CrossRef] [PubMed]
  18. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  19. G. Marquez, L.-H. Wang, S.-P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–805 (1998).
    [CrossRef]
  20. T. A. Whittingham, “The safety of ultrasound,” Imaging 6, 33–51 (1994).
  21. American National Standards Institute, American National Standard for the Safe Use of Lasers, Standard Z136.1-1993 (ANSI, Inc., New York, 1993).
  22. P. Gleyzes, F. Guernet, A. C. Boccara, “Picometric profilometry. II. Multidetector approach and multiplexed lock-in detection,” J. Opt. 26, 251–265 (1995).
    [CrossRef]

1999 (1)

1998 (5)

1997 (2)

L.-H. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
[CrossRef]

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

1996 (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

1995 (5)

L.-H. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef] [PubMed]

P. Gleyzes, F. Guernet, A. C. Boccara, “Picometric profilometry. II. Multidetector approach and multiplexed lock-in detection,” J. Opt. 26, 251–265 (1995).
[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

1994 (2)

T. A. Whittingham, “The safety of ultrasound,” Imaging 6, 33–51 (1994).

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 9, 311–313 (1994).
[CrossRef]

Boas, D. A.

Boccara, A. C.

S. Leveque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

P. Gleyzes, F. Guernet, A. C. Boccara, “Picometric profilometry. II. Multidetector approach and multiplexed lock-in detection,” J. Opt. 26, 251–265 (1995).
[CrossRef]

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Chance, B.

de Mul, F. F. M.

Dekker, A.

Delpy, D. T.

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 9, 311–313 (1994).
[CrossRef]

Esenaliev, R. O.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

Genack, A. Z.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Gleyzes, P.

P. Gleyzes, F. Guernet, A. C. Boccara, “Picometric profilometry. II. Multidetector approach and multiplexed lock-in detection,” J. Opt. 26, 251–265 (1995).
[CrossRef]

Guernet, F.

P. Gleyzes, F. Guernet, A. C. Boccara, “Picometric profilometry. II. Multidetector approach and multiplexed lock-in detection,” J. Opt. 26, 251–265 (1995).
[CrossRef]

Hebden, J. C.

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 9, 311–313 (1994).
[CrossRef]

Hoelen, C. G. A.

Jacques, S. L.

L.-H. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Kempe, M.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Kruger, R. A.

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).

Ku, G.

Larionov, M.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Lebec, M.

Leutz, W.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Leveque, S.

Lin, S.-P.

Liu, P.

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).

Maret, G.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Marquez, G.

O’Leary, M. A.

Oraevsky, A. A.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Pongers, R.

Saint-Jalmes, H.

Schwartz, J. A.

Shen, Q.

Thomsen, S. L.

Tittel, F. K.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Wang, L.-H.

Whittingham, T. A.

T. A. Whittingham, “The safety of ultrasound,” Imaging 6, 33–51 (1994).

Yodh, A. G.

Zaslavsky, D.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Zhao, X.

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

Comput. Methods Programs Biomed. (1)

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Imaging (1)

T. A. Whittingham, “The safety of ultrasound,” Imaging 6, 33–51 (1994).

J. Biomed. Opt. (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

J. Opt. (1)

P. Gleyzes, F. Guernet, A. C. Boccara, “Picometric profilometry. II. Multidetector approach and multiplexed lock-in detection,” J. Opt. 26, 251–265 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Opt. Lett. (7)

Photochem. Photobiol. (1)

L.-H. Wang, “Ultrasonic modulation of scattered light in turbid media and a potential novel tomography in biomedicine,” Photochem. Photobiol. 67, 41–49 (1998).
[CrossRef] [PubMed]

Phys. B (1)

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Other (6)

American National Standards Institute, American National Standard for the Safe Use of Lasers, Standard Z136.1-1993 (ANSI, Inc., New York, 1993).

R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic sketch of the experimental setup: DL, diode laser; C, CCD camera; U, ultrasonic transducer; FG’s, function generators; PA, power amplifier; T, tissue sample; PC, computer.

Fig. 2
Fig. 2

Photon path-length distribution after transmission through a 3-cm-thick tissue.

Fig. 3
Fig. 3

ac and dc signal intensities versus tissue thickness. The ultrasonic column was in the middle plane of the sample slab.

Fig. 4
Fig. 4

Simulated 1D images along the Z axis (optical axis). The light was incident at Z = 0. (a) The ac/dc signal when the scan line was far away from the object, (b) the ac/dc signal when the scan line passed through the object.

Fig. 5
Fig. 5

Simulated 1D image along the X axis with the scan line passing through the center of the object.

Fig. 6
Fig. 6

Modulation depth M versus CCD pixel-binning size.

Fig. 7
Fig. 7

Experimental images of 1.5-cm-thick chicken-breast tissue with a laser beam normally incident. (a) 2D cross-sectional image, (b) 1D image along the X axis at the center of the sample. The front surface faced the laser beam.

Fig. 8
Fig. 8

Experimental images of 1.5-cm-thick chicken-breast tissue with a laser beam obliquely incident at 15°. (a) 2D cross-sectional image, (b) 1D image along the X axis at the center of the sample. The front surface faced the laser beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ii  Ib+Im cosϕ+ϕi,
M=12Ib [I90°-I270°2+I0°-I180°2]1/2.

Metrics