Abstract

A modified photothermal deformation technique is used to measure the absorptance behaviors of optical multilayered dielectric coatings for a high-power laser system. The surface thermal-lensing modification uses an enlarged probe beam to facilitate alignment of the laser beam and data acquisition. The coatings, both reflective and transmissive types, are made by a physical vapor-deposition process. Coating absorptances are observed to depend on the laser’s exposure time and power density. Time-dependent absorptance defect models are proposed. Also, micrometer-sized sites of high absorptance and an area with physical damage can be found during the spatial scans. It is proposed that absorptance values reported for coatings in high-repetition-rate or cw-laser systems include time- and power-dependent behaviors in addition to other relevant irradiation parameters.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. L. Bass, R. E. Bonanno, R. P. Hackel, P. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992).
    [CrossRef] [PubMed]
  2. I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.
  3. H. R. Aldag, “The development of a high average power dye laser,” in Technical Digest of the International Conference on Lasers ’89 (STS, McLean, Va., 1989), paper HG.1, 27.
  4. R. G. Morton, V. G. Draggoo, “Reliable high average power high pulse energy dye laser,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1981), pp. ThS7–1–THS7–2; IEEE J. Quantum Electron. QE-17, 222 (1981).
  5. C. R. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high-repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 109–115 (1990).
  6. V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE622, 186–190 (1986).
    [CrossRef]
  7. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
    [CrossRef]
  8. E. Welsh, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
    [CrossRef]
  9. Z. L. Wu, M. Thompsen, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1995).
  10. P. K. Kuo, M. Munidasa, “Single beam interferometry of a thermal bump: experiment” in Review of Progress in Quantitative NDE, D. O. Thompsen, D. E. Chimenti, eds. (Plenum, New York, 1989), pp. 627–633; “Single beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–53311990.
  11. H. Saito, M. Irikura, M. Haraguchi, M. Fukui, “New type of photothermal spectroscopic technique,” Appl. Opt. 31, 2047–2054 (1992).
    [CrossRef] [PubMed]
  12. Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser induced thermal lensing for thin film characterization,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–303 (1995).
  13. Y. Han, Q. Zhao, Z. L. Wu, “Near-field detection of laser-induced thermal waves in optical materials,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 257–267 (1997).
  14. J. Power, “Pulsed mode thermal lens effect detection in the near field via thermally-induced probe beam spatial phase modulation: theory,” Appl. Opt. 29, 52–63 (1996).
    [CrossRef]
  15. Q. He, R. Vyas, R. Gupta, “Photothermal lensing detection: theory and experiment,” Appl. Opt. 36, 7046–7058 (1997).
    [CrossRef]
  16. P. K. Kuo, Y. Lu, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “A poor man’s approach to lock-in imaging,” Prog. Natural Sci. 6, S99–S102 (1996).
  17. R. Chow, J. R. Taylor, Z. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1997).
  18. Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Nondestructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
    [CrossRef]
  19. R. J. Tench, M. R. Kozlowski, R. Chow, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
    [CrossRef]
  20. S. A. Letts, D. W. Myers, L. A. Witt, “Ultra-smooth plasma polymerized coatings for laser fusion targets,” J. Vac. Sci. Technol. 19, 739–742 (1981).
    [CrossRef]

1997

1996

J. Power, “Pulsed mode thermal lens effect detection in the near field via thermally-induced probe beam spatial phase modulation: theory,” Appl. Opt. 29, 52–63 (1996).
[CrossRef]

P. K. Kuo, Y. Lu, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “A poor man’s approach to lock-in imaging,” Prog. Natural Sci. 6, S99–S102 (1996).

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Nondestructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

1995

1994

R. J. Tench, M. R. Kozlowski, R. Chow, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

1992

1983

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

1981

S. A. Letts, D. W. Myers, L. A. Witt, “Ultra-smooth plasma polymerized coatings for laser fusion targets,” J. Vac. Sci. Technol. 19, 739–742 (1981).
[CrossRef]

Aldag, H. R.

H. R. Aldag, “The development of a high average power dye laser,” in Technical Digest of the International Conference on Lasers ’89 (STS, McLean, Va., 1989), paper HG.1, 27.

Amer, N. M.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Bass, I. L.

I. L. Bass, R. E. Bonanno, R. P. Hackel, P. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992).
[CrossRef] [PubMed]

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Bissinger, H. D.

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE622, 186–190 (1986).
[CrossRef]

Bliss, E. S.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Boccara, A. C.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Bonanno, R. E.

I. L. Bass, R. E. Bonanno, R. P. Hackel, P. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992).
[CrossRef] [PubMed]

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Castle, P.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Chow, R.

R. J. Tench, M. R. Kozlowski, R. Chow, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

R. Chow, J. R. Taylor, Z. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1997).

Draggoo, V. G.

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE622, 186–190 (1986).
[CrossRef]

R. G. Morton, V. G. Draggoo, “Reliable high average power high pulse energy dye laser,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1981), pp. ThS7–1–THS7–2; IEEE J. Quantum Electron. QE-17, 222 (1981).

Favro, L. D.

P. K. Kuo, Y. Lu, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “A poor man’s approach to lock-in imaging,” Prog. Natural Sci. 6, S99–S102 (1996).

Feldman, M.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Fournier, D.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Fukui, M.

Gu, S. T.

P. K. Kuo, Y. Lu, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “A poor man’s approach to lock-in imaging,” Prog. Natural Sci. 6, S99–S102 (1996).

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Nondestructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser induced thermal lensing for thin film characterization,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–303 (1995).

Gupta, R.

Hackel, R. P.

I. L. Bass, R. E. Bonanno, R. P. Hackel, P. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992).
[CrossRef] [PubMed]

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Hammond, P.

I. L. Bass, R. E. Bonanno, R. P. Hackel, P. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992).
[CrossRef] [PubMed]

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Han, Y.

Y. Han, Q. Zhao, Z. L. Wu, “Near-field detection of laser-induced thermal waves in optical materials,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 257–267 (1997).

R. Chow, J. R. Taylor, Z. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1997).

Haraguchi, M.

He, Q.

Irikura, M.

Johnson, S. A.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Kichinski, R.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Kohn, S.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Kozlowski, M. R.

R. J. Tench, M. R. Kozlowski, R. Chow, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Z. L. Wu, M. Thompsen, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1995).

Krupka, R.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Nondestructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

Kuo, P. K.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Nondestructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

P. K. Kuo, Y. Lu, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “A poor man’s approach to lock-in imaging,” Prog. Natural Sci. 6, S99–S102 (1996).

P. K. Kuo, M. Munidasa, “Single beam interferometry of a thermal bump: experiment” in Review of Progress in Quantitative NDE, D. O. Thompsen, D. E. Chimenti, eds. (Plenum, New York, 1989), pp. 627–633; “Single beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–53311990.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser induced thermal lensing for thin film characterization,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–303 (1995).

Z. L. Wu, M. Thompsen, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1995).

Letts, S. A.

S. A. Letts, D. W. Myers, L. A. Witt, “Ultra-smooth plasma polymerized coatings for laser fusion targets,” J. Vac. Sci. Technol. 19, 739–742 (1981).
[CrossRef]

Lu, Y.

P. K. Kuo, Y. Lu, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “A poor man’s approach to lock-in imaging,” Prog. Natural Sci. 6, S99–S102 (1996).

Lu, Y. S.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Nondestructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

Z. L. Wu, M. Thompsen, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1995).

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser induced thermal lensing for thin film characterization,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–303 (1995).

Morton, R. G.

R. G. Morton, V. G. Draggoo, “Reliable high average power high pulse energy dye laser,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1981), pp. ThS7–1–THS7–2; IEEE J. Quantum Electron. QE-17, 222 (1981).

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE622, 186–190 (1986).
[CrossRef]

Munidasa, M.

P. K. Kuo, M. Munidasa, “Single beam interferometry of a thermal bump: experiment” in Review of Progress in Quantitative NDE, D. O. Thompsen, D. E. Chimenti, eds. (Plenum, New York, 1989), pp. 627–633; “Single beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–53311990.

Myers, D. W.

S. A. Letts, D. W. Myers, L. A. Witt, “Ultra-smooth plasma polymerized coatings for laser fusion targets,” J. Vac. Sci. Technol. 19, 739–742 (1981).
[CrossRef]

Neeb, K.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

O’Neil, R. W.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Olmstead, M. A.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Paisner, J. A.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Paris, R. D.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Power, J.

Ristau, D.

Saito, H.

Salmon, J. T.

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

Sarginson, T. G.

C. R. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high-repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 109–115 (1990).

Sawicki, R. H.

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE622, 186–190 (1986).
[CrossRef]

Stolz, C. J.

Z. L. Wu, M. Thompsen, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1995).

Stolz, C. R.

C. R. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high-repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 109–115 (1990).

Taylor, J. R.

C. R. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high-repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 109–115 (1990).

R. Chow, J. R. Taylor, Z. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1997).

Tench, R. J.

R. J. Tench, M. R. Kozlowski, R. Chow, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Thomas, R. L.

P. K. Kuo, Y. Lu, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “A poor man’s approach to lock-in imaging,” Prog. Natural Sci. 6, S99–S102 (1996).

Thompsen, M.

Z. L. Wu, M. Thompsen, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1995).

Vyas, R.

Welsh, E.

Witt, L. A.

S. A. Letts, D. W. Myers, L. A. Witt, “Ultra-smooth plasma polymerized coatings for laser fusion targets,” J. Vac. Sci. Technol. 19, 739–742 (1981).
[CrossRef]

Wu, Z.

R. Chow, J. R. Taylor, Z. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1997).

Wu, Z. L.

P. K. Kuo, Y. Lu, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “A poor man’s approach to lock-in imaging,” Prog. Natural Sci. 6, S99–S102 (1996).

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Nondestructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

Y. Han, Q. Zhao, Z. L. Wu, “Near-field detection of laser-induced thermal waves in optical materials,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 257–267 (1997).

Z. L. Wu, M. Thompsen, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1995).

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser induced thermal lensing for thin film characterization,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–303 (1995).

Yang, T.

R. Chow, J. R. Taylor, Z. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1997).

Zhao, Q.

Y. Han, Q. Zhao, Z. L. Wu, “Near-field detection of laser-induced thermal waves in optical materials,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 257–267 (1997).

Appl. Opt.

Appl. Phys. A

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

J. Vac. Sci. Technol.

S. A. Letts, D. W. Myers, L. A. Witt, “Ultra-smooth plasma polymerized coatings for laser fusion targets,” J. Vac. Sci. Technol. 19, 739–742 (1981).
[CrossRef]

J. Vac. Sci. Technol. A

R. J. Tench, M. R. Kozlowski, R. Chow, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Prog. Natural Sci.

P. K. Kuo, Y. Lu, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “A poor man’s approach to lock-in imaging,” Prog. Natural Sci. 6, S99–S102 (1996).

Thin Solid Films

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Nondestructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

Other

Z. L. Wu, M. Thompsen, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1995).

P. K. Kuo, M. Munidasa, “Single beam interferometry of a thermal bump: experiment” in Review of Progress in Quantitative NDE, D. O. Thompsen, D. E. Chimenti, eds. (Plenum, New York, 1989), pp. 627–633; “Single beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–53311990.

R. Chow, J. R. Taylor, Z. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1997).

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser induced thermal lensing for thin film characterization,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–303 (1995).

Y. Han, Q. Zhao, Z. L. Wu, “Near-field detection of laser-induced thermal waves in optical materials,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 257–267 (1997).

I. L. Bass, E. S. Bliss, R. E. Bonanno, P. Castle, M. Feldman, R. P. Hackel, P. Hammond, S. A. Johnson, R. Kichinski, K. Neeb, R. W. O’Neil, J. A. Paisner, R. D. Paris, J. T. Salmon, “High-power performance of a copper-laser-pumped-dye master-oscillator-powered-amplifier chain,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), p. 392.

H. R. Aldag, “The development of a high average power dye laser,” in Technical Digest of the International Conference on Lasers ’89 (STS, McLean, Va., 1989), paper HG.1, 27.

R. G. Morton, V. G. Draggoo, “Reliable high average power high pulse energy dye laser,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1981), pp. ThS7–1–THS7–2; IEEE J. Quantum Electron. QE-17, 222 (1981).

C. R. Stolz, J. R. Taylor, T. G. Sarginson, “Damage test capabilities using a high-repetition rate visible laser at LLNL,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 109–115 (1990).

V. G. Draggoo, R. G. Morton, R. H. Sawicki, H. D. Bissinger, “Optical coating absorption measurement for high power laser systems,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE622, 186–190 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Comparison of conventional PTD and STL techniques. PTD requires two small-diameter laser beams aligned close to each other. The probe beam’s diameter must be smaller than the lateral dimension of the thermally induced deformation. The STL technique uses a probe beam diameter that is greater than the lateral dimension of the deformation.

Fig. 2
Fig. 2

Simulated beam intensities at the detector. (a), (b) Modeled results when the absorptance is measured with a conventional PTD setup: (a) the beam profile without a surface deformation, (b) the beam profile with a surface deformation. The absorptance signal is proportional to the deflection in conventional PTD.(c)–(e) Results when a surface thermal lensing configuration is used. There is a larger beam profile for (c) because the surface thermal lensing configuration uses a larger probe beam. (d) The effect of a surface bump of the same magnitude as in (b). The intensity change at the center of the detector is proportional to the absorptance of the coating. (e) The beam profile when the probe beam is misaligned 7.5 µm along the horizontal axis.

Fig. 3
Fig. 3

Surface thermal lensing setup, which is similar to a conventional photothermal deformation setup except that the probe–pump beam diameter ratio is 5. The probe beam’s diameters are 500 and 5 µm for stabilized-absorptance and scan measurements, respectively.

Fig. 4
Fig. 4

Absorptance time dependencies. Four cases of absorptance time dependencies irradiated at 514 nm are shown. Experimental data are points, and best-fit curves are solid curves. (a) Sample 573 irradiated with a power density of 9.9 kW/cm2. The absorptance increases linearly with time. (b) Sample 1352 irradiated with a power density of 15.8 kW/cm2. The absorptance decreases to an equilibrium value. (c) Sample 1289 irradiated with a power density of 15.8 kW/cm2. The absorptance increases to an equilibrium value. (d) Sample 325 irradiated at two power densities, each with a different absorptance trend. The absorptance increases quickly and is followed by a slow decrease at a low power density of 5 kW/cm2. The absorptance increases to an equilibrium value at a high power density of 8.7 kW/cm2.

Fig. 5
Fig. 5

Typical time-independent absorptance behavior. This behavior is observed in optics with transmissive coatings, such as beam splitters and antireflectors. Laser illumination affects the absorptance of a transmissive optic less than that of a reflective optic. Absorptance of sample 96, a B/S, is shown.

Fig. 6
Fig. 6

Absorptance scans of multilayered dielectric optical coatings. a, HR coating, sample 325; b, a scratched HR coating, sample 1352; c, a B/S coating, sample 81; d, an AR coating, sample 726. The scan dimensions are 1 mm × 1 mm.

Fig. 7
Fig. 7

Energy-bandgap schematic for linearly increasing absorptance as a function of time: C, conduction band; V, valence band.

Fig. 8
Fig. 8

Energy-bandgap schematic for decreasing absorptance with time. D3 +, a positively charged absorbing defect with a conduction-band electron; D4 +, the preexisting positively charge defect with a conduction-band electron; D3 o, the neutralized defect.

Fig. 9
Fig. 9

Energy-bandgap schematic for increasing absorptance at a diminishing rate.

Tables (2)

Tables Icon

Table 1 Absorptance Signals from a Given Samplea

Tables Icon

Table 2 Long-Term Absorptance Values of the Coatingsa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ALt=4.8×10-8t+6.5×10-5,
ADt=1.5×10-4 exp-t/58+1.8×10-5,
AIt=6.0×10-51-exp-t/80+9.1×10-5.
At=7.0×10-5 exp-t/200+1.3×10-4×1-exp-t/6+5.0×10-6,
At=7.0×10-5 exp-t/200+2.2×10-4×1-exp-t/40+2.0×10-41-exp-t/350+8.3×10-5.
AL/t=const.
A/t=kA/τ,
ALt=A1t+A2.
ADt=A3 exp-t/τ,
AIt=A51-exp-t/τ,

Metrics