Abstract

We present the technique of bideposition to realize thin-film helicoidal bianisotropic mediums (TFHBM’s) that exhibit high optical activity. We show, by experiment as well as by simulation, that the optical rotation produced by these chiral sculptured thin films is roughly proportional to the square of the local linear birefringence. Experimental measurements on bideposited TFHBM’s of titanium oxide yield a typical value of 5°/µm for the effective specific rotation in the short-wavelength regime; the corresponding value determined for the standard unideposited TFHBM’s is 1°/µm. Both types of TFHBM’s are highly optically active in comparison with quartz, fluorite films, and cholesteric liquid crystals. Bideposited TFHBM’s will lend themselves to many different types of optical devices.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, UK, 1985).
  2. H. C. Chen, Theory of Electromagnetic Waves (TechBooks, Fairfax, Va., 1993).
  3. A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994).
  4. S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, UK, 1992).
  5. A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995); erratum, 454, 3275 (1998).
    [CrossRef]
  6. E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. (Leipzig) 138, 628–638 (1869).
    [CrossRef]
  7. N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
    [CrossRef]
  8. A. Lakhtakia, R. Messier, “Sculptured thin films—I. Concepts,” Mat. Res. Innovat. 1, 145–148 (1997).
    [CrossRef]
  9. K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
    [CrossRef]
  10. K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
    [CrossRef]
  11. P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
    [CrossRef]
  12. V. C. Venugopal, A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. London Ser. A 454, 1335–1371 (1998).
    [CrossRef]
  13. V. C. Venugopal, A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums (TFHBMs),” Int. J. Appl. Electromagn. Mech. 9, 201–210 (1998).
  14. P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
    [CrossRef]
  15. A. Lakhtakia, “Energy flows in axially excited, locally biaxial, dielectric, helicoidal bianisotropic media (HBMs),” Opt. Commun. 161, 275–286 (1999).
    [CrossRef]
  16. A. Lakhtakia, I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
    [CrossRef]
  17. I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998).
    [CrossRef]
  18. I. J. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
    [CrossRef]
  19. In this paper, the term wavelength refers to wavelength in vacuum.
  20. V. C. Venugopal, A. Lakhtakia, “On selective absorption in an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–181 (1998); erratum, 161, 370 (1999).
  21. A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998).
    [CrossRef]
  22. R. Messier, A. Lakhtakia, “Sculptured thin films—II. Experiments and applications,” Mat. Res. Innovat. 2, 217–222 (1999).
    [CrossRef]
  23. K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1998).
    [CrossRef]
  24. K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
    [CrossRef]
  25. I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.
  26. I. Hodgkinson, Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
    [CrossRef]
  27. I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture adsorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, ed., Proc. SPIE3790, 184–194 (1999).
    [CrossRef]
  28. I. J. Hodgkinson, Q. H. Wu, “Birefringent thin film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
    [CrossRef]
  29. I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, eds., Proc. SPIE3790, 119–139 (1999).
    [CrossRef]
  30. I. J. Hodgkinson, Q. H. Wu, “Practical designs for thin-film wave plates,” Opt. Eng. 37, 2630–2633 (1998).
    [CrossRef]
  31. I. J. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
    [CrossRef]
  32. T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989).
    [CrossRef] [PubMed]
  33. A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
    [CrossRef]
  34. I. J. Hodgkinson, A. Lakhtakia, “On the Motohiro-Taga interface for biaxial media,” Opt. Eng. 37, 3268–3271 (1998).
    [CrossRef]
  35. O. R. Monteiro, A. Visir, I. G. Brown, “Multilayer thin-films with chevron-like microstructure,” J. Phys. D 31, 3188–3196 (1998).
    [CrossRef]
  36. A. J. McPhun, Q. H. Wu, I. J. Hodgkinson, “Birefringent rugate filters,” Electron. Lett. 34, 360–361 (1998).
    [CrossRef]
  37. I. J. Hodgkinson, Q. H. Wu, A. J. McPhun, “Incremental-growth model for the deposition of spatially-modulated thin film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
    [CrossRef]
  38. E. Ertekin, V. C. Venugopal, A. Lakhtakia, “Effect of substrate and lid on the optical response of an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Microwave Opt. Technol. Lett. 20, 218–222 (1998).
    [CrossRef]
  39. D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
    [CrossRef]
  40. A. Lakhtakia, V. C. Venugopal, “Dielectric thin-film helicoidal bianisotropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microwave Opt. Technol. Lett. 17, 135–140 (1998).
    [CrossRef]
  41. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  42. P. G. deGennes, J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, UK, 1993).

1999 (6)

A. Lakhtakia, “Energy flows in axially excited, locally biaxial, dielectric, helicoidal bianisotropic media (HBMs),” Opt. Commun. 161, 275–286 (1999).
[CrossRef]

A. Lakhtakia, I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
[CrossRef]

R. Messier, A. Lakhtakia, “Sculptured thin films—II. Experiments and applications,” Mat. Res. Innovat. 2, 217–222 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Birefringent thin film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
[CrossRef]

I. Hodgkinson, Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
[CrossRef]

1998 (15)

I. J. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

A. Lakhtakia, V. C. Venugopal, “Dielectric thin-film helicoidal bianisotropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microwave Opt. Technol. Lett. 17, 135–140 (1998).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, “On the Motohiro-Taga interface for biaxial media,” Opt. Eng. 37, 3268–3271 (1998).
[CrossRef]

O. R. Monteiro, A. Visir, I. G. Brown, “Multilayer thin-films with chevron-like microstructure,” J. Phys. D 31, 3188–3196 (1998).
[CrossRef]

A. J. McPhun, Q. H. Wu, I. J. Hodgkinson, “Birefringent rugate filters,” Electron. Lett. 34, 360–361 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. J. McPhun, “Incremental-growth model for the deposition of spatially-modulated thin film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

E. Ertekin, V. C. Venugopal, A. Lakhtakia, “Effect of substrate and lid on the optical response of an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Microwave Opt. Technol. Lett. 20, 218–222 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Practical designs for thin-film wave plates,” Opt. Eng. 37, 2630–2633 (1998).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1998).
[CrossRef]

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

V. C. Venugopal, A. Lakhtakia, “On selective absorption in an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–181 (1998); erratum, 161, 370 (1999).

A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998).
[CrossRef]

V. C. Venugopal, A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. London Ser. A 454, 1335–1371 (1998).
[CrossRef]

V. C. Venugopal, A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums (TFHBMs),” Int. J. Appl. Electromagn. Mech. 9, 201–210 (1998).

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

1997 (2)

A. Lakhtakia, R. Messier, “Sculptured thin films—I. Concepts,” Mat. Res. Innovat. 1, 145–148 (1997).
[CrossRef]

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

1996 (1)

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

1995 (2)

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995); erratum, 454, 3275 (1998).
[CrossRef]

1994 (1)

A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
[CrossRef]

1989 (1)

1970 (1)

D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
[CrossRef]

1959 (1)

N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
[CrossRef]

1869 (1)

E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. (Leipzig) 138, 628–638 (1869).
[CrossRef]

Berreman, D. W.

D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
[CrossRef]

Brett, M. J.

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1998).
[CrossRef]

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

Brown, I. G.

O. R. Monteiro, A. Visir, I. G. Brown, “Multilayer thin-films with chevron-like microstructure,” J. Phys. D 31, 3188–3196 (1998).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, UK, 1992).

Chen, H. C.

H. C. Chen, Theory of Electromagnetic Waves (TechBooks, Fairfax, Va., 1993).

Collins, R. W.

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

deGennes, P. G.

P. G. deGennes, J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, UK, 1993).

Ertekin, E.

E. Ertekin, V. C. Venugopal, A. Lakhtakia, “Effect of substrate and lid on the optical response of an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Microwave Opt. Technol. Lett. 20, 218–222 (1998).
[CrossRef]

Hazel, J.

Hodgkinson, I.

Hodgkinson, I. J.

I. J. Hodgkinson, Q. H. Wu, “Birefringent thin film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
[CrossRef]

A. Lakhtakia, I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Practical designs for thin-film wave plates,” Opt. Eng. 37, 2630–2633 (1998).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, “On the Motohiro-Taga interface for biaxial media,” Opt. Eng. 37, 3268–3271 (1998).
[CrossRef]

A. J. McPhun, Q. H. Wu, I. J. Hodgkinson, “Birefringent rugate filters,” Electron. Lett. 34, 360–361 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. J. McPhun, “Incremental-growth model for the deposition of spatially-modulated thin film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, eds., Proc. SPIE3790, 119–139 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture adsorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, ed., Proc. SPIE3790, 184–194 (1999).
[CrossRef]

Kowal, J.

N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
[CrossRef]

Lakhtakia, A.

R. Messier, A. Lakhtakia, “Sculptured thin films—II. Experiments and applications,” Mat. Res. Innovat. 2, 217–222 (1999).
[CrossRef]

A. Lakhtakia, I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
[CrossRef]

A. Lakhtakia, “Energy flows in axially excited, locally biaxial, dielectric, helicoidal bianisotropic media (HBMs),” Opt. Commun. 161, 275–286 (1999).
[CrossRef]

A. Lakhtakia, V. C. Venugopal, “Dielectric thin-film helicoidal bianisotropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microwave Opt. Technol. Lett. 17, 135–140 (1998).
[CrossRef]

A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998).
[CrossRef]

E. Ertekin, V. C. Venugopal, A. Lakhtakia, “Effect of substrate and lid on the optical response of an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Microwave Opt. Technol. Lett. 20, 218–222 (1998).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, “On the Motohiro-Taga interface for biaxial media,” Opt. Eng. 37, 3268–3271 (1998).
[CrossRef]

V. C. Venugopal, A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. London Ser. A 454, 1335–1371 (1998).
[CrossRef]

V. C. Venugopal, A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums (TFHBMs),” Int. J. Appl. Electromagn. Mech. 9, 201–210 (1998).

V. C. Venugopal, A. Lakhtakia, “On selective absorption in an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–181 (1998); erratum, 161, 370 (1999).

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

A. Lakhtakia, R. Messier, “Sculptured thin films—I. Concepts,” Mat. Res. Innovat. 1, 145–148 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995); erratum, 454, 3275 (1998).
[CrossRef]

A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
[CrossRef]

A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994).

McGrath, K. M.

I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture adsorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, ed., Proc. SPIE3790, 184–194 (1999).
[CrossRef]

McPhun, A. J.

A. J. McPhun, Q. H. Wu, I. J. Hodgkinson, “Birefringent rugate filters,” Electron. Lett. 34, 360–361 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. J. McPhun, “Incremental-growth model for the deposition of spatially-modulated thin film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

Messier, R.

R. Messier, A. Lakhtakia, “Sculptured thin films—II. Experiments and applications,” Mat. Res. Innovat. 2, 217–222 (1999).
[CrossRef]

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

A. Lakhtakia, R. Messier, “Sculptured thin films—I. Concepts,” Mat. Res. Innovat. 1, 145–148 (1997).
[CrossRef]

A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
[CrossRef]

Monteiro, O. R.

O. R. Monteiro, A. Visir, I. G. Brown, “Multilayer thin-films with chevron-like microstructure,” J. Phys. D 31, 3188–3196 (1998).
[CrossRef]

Motohiro, T.

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, UK, 1985).

Prost, J.

P. G. deGennes, J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, UK, 1993).

Reusch, E.

E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. (Leipzig) 138, 628–638 (1869).
[CrossRef]

Robbie, K.

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1998).
[CrossRef]

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

Rovira, P. I.

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

Scheffer, T. J.

D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
[CrossRef]

Sit, J. C.

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

Sunal, P. D.

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

Taga, Y.

Venugopal, V. C.

V. C. Venugopal, A. Lakhtakia, “On selective absorption in an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–181 (1998); erratum, 161, 370 (1999).

V. C. Venugopal, A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums (TFHBMs),” Int. J. Appl. Electromagn. Mech. 9, 201–210 (1998).

V. C. Venugopal, A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. London Ser. A 454, 1335–1371 (1998).
[CrossRef]

A. Lakhtakia, V. C. Venugopal, “Dielectric thin-film helicoidal bianisotropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microwave Opt. Technol. Lett. 17, 135–140 (1998).
[CrossRef]

E. Ertekin, V. C. Venugopal, A. Lakhtakia, “Effect of substrate and lid on the optical response of an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Microwave Opt. Technol. Lett. 20, 218–222 (1998).
[CrossRef]

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

Visir, A.

O. R. Monteiro, A. Visir, I. G. Brown, “Multilayer thin-films with chevron-like microstructure,” J. Phys. D 31, 3188–3196 (1998).
[CrossRef]

Weiglhofer, W. S.

A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995); erratum, 454, 3275 (1998).
[CrossRef]

Wu, Q. H.

I. Hodgkinson, Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Birefringent thin film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Practical designs for thin-film wave plates,” Opt. Eng. 37, 2630–2633 (1998).
[CrossRef]

A. J. McPhun, Q. H. Wu, I. J. Hodgkinson, “Birefringent rugate filters,” Electron. Lett. 34, 360–361 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. J. McPhun, “Incremental-growth model for the deposition of spatially-modulated thin film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture adsorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, ed., Proc. SPIE3790, 184–194 (1999).
[CrossRef]

Yarussi, R. A.

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Young, N. O.

N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
[CrossRef]

Ann. Phys. Chem. (Leipzig) (1)

E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. (Leipzig) 138, 628–638 (1869).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

I. J. Hodgkinson, Q. H. Wu, “Birefringent thin film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
[CrossRef]

P. I. Rovira, R. A. Yarussi, R. W. Collins, V. C. Venugopal, R. Messier, A. Lakhtakia, K. Robbie, M. J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium,” Appl. Phys. Lett. 71, 1180–1182 (1997).
[CrossRef]

Electron. Lett. (1)

A. J. McPhun, Q. H. Wu, I. J. Hodgkinson, “Birefringent rugate filters,” Electron. Lett. 34, 360–361 (1998).
[CrossRef]

Int. J. Appl. Electromagn. Mech. (1)

V. C. Venugopal, A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums (TFHBMs),” Int. J. Appl. Electromagn. Mech. 9, 201–210 (1998).

J. Phys. D (1)

O. R. Monteiro, A. Visir, I. G. Brown, “Multilayer thin-films with chevron-like microstructure,” J. Phys. D 31, 3188–3196 (1998).
[CrossRef]

J. Vac. Sci. Technol. A (3)

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1998).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (2)

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. J. McPhun, “Incremental-growth model for the deposition of spatially-modulated thin film nanostructures,” J. Vac. Sci. Technol. B 16, 2811–2816 (1998).
[CrossRef]

Mat. Res. Innovat. (2)

R. Messier, A. Lakhtakia, “Sculptured thin films—II. Experiments and applications,” Mat. Res. Innovat. 2, 217–222 (1999).
[CrossRef]

A. Lakhtakia, R. Messier, “Sculptured thin films—I. Concepts,” Mat. Res. Innovat. 1, 145–148 (1997).
[CrossRef]

Microwave Opt. Technol. Lett. (2)

E. Ertekin, V. C. Venugopal, A. Lakhtakia, “Effect of substrate and lid on the optical response of an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Microwave Opt. Technol. Lett. 20, 218–222 (1998).
[CrossRef]

A. Lakhtakia, V. C. Venugopal, “Dielectric thin-film helicoidal bianisotropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microwave Opt. Technol. Lett. 17, 135–140 (1998).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

D. W. Berreman, T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. 11, 395–405 (1970).
[CrossRef]

Nature (London) (2)

N. O. Young, J. Kowal, “Optically active fluorite films,” Nature (London) 183, 104–105 (1959).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

Opt. Commun. (4)

P. D. Sunal, A. Lakhtakia, R. Messier, “Simple model for dielectric thin-film helicoidal bianisotropic media,” Opt. Commun. 158, 119–126 (1998).
[CrossRef]

A. Lakhtakia, “Energy flows in axially excited, locally biaxial, dielectric, helicoidal bianisotropic media (HBMs),” Opt. Commun. 161, 275–286 (1999).
[CrossRef]

A. Lakhtakia, I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
[CrossRef]

V. C. Venugopal, A. Lakhtakia, “On selective absorption in an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–181 (1998); erratum, 161, 370 (1999).

Opt. Eng. (3)

A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, “On the Motohiro-Taga interface for biaxial media,” Opt. Eng. 37, 3268–3271 (1998).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, “Practical designs for thin-film wave plates,” Opt. Eng. 37, 2630–2633 (1998).
[CrossRef]

Proc. R. Soc. London Ser. A (2)

V. C. Venugopal, A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. London Ser. A 454, 1335–1371 (1998).
[CrossRef]

A. Lakhtakia, W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. London Ser. A 448, 419–437 (1995); erratum, 454, 3275 (1998).
[CrossRef]

Sens. Actuators B (1)

A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998).
[CrossRef]

Other (11)

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

P. G. deGennes, J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, UK, 1993).

I. J. Hodgkinson, Q. H. Wu, K. M. McGrath, “Moisture adsorption effects in biaxial and chiral optical thin film coatings,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, ed., Proc. SPIE3790, 184–194 (1999).
[CrossRef]

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, UK, 1985).

H. C. Chen, Theory of Electromagnetic Waves (TechBooks, Fairfax, Va., 1993).

A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994).

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, UK, 1992).

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998).
[CrossRef]

In this paper, the term wavelength refers to wavelength in vacuum.

I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” in Engineered Nanostructural Films and Materials, A. Lakhtakia, R. Messier, eds., Proc. SPIE3790, 119–139 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup used for the vacuum deposition of TFHBM’s. During the growth of the film, the deposition angle θ v is constant, but the substrate is rotated by specific amounts about the x axis.

Fig. 2
Fig. 2

Simulation of a TFHBM by a cascade of biaxial sublayers.

Fig. 3
Fig. 3

Nanostructure of a bideposited TFHBM; sample ID: cr07068, corner view, field-emission SEM.

Fig. 4
Fig. 4

Simulated spectra of OR ϕ t and ellipticity e calculated of index-matched, bideposited, left-handed TFHBM’s with (i) Δn = 0.07 and (ii) Δn = 0.14. In each case n av = 1.8 and d = 10Ω.

Fig. 5
Fig. 5

Measured spectra of OR ϕ t and ellipticity e of a bideposited left-handed TFHBM made of titanium oxide; d = 1.4 µm, θ v = 70°, Ω = 140 nm. The spectra are effectively averaged over all possible orientations of the electric field vector of the linearly polarized incident plane wave.

Fig. 6
Fig. 6

Same as Fig. 5 but for a bideposited TFHBM with d = 4.4 µm, θ v = 70°, and Ω = 440 nm.

Fig. 7
Fig. 7

Simulated growth of ϕ t versus number of half-turns (d/Ω) in the helical structure of an index-matched, bideposited TFHBM with n av = 1.8, Δn = 0.14, and G = 2.

Tables (2)

Tables Icon

Table 1 Deposition Parameters and Optical Properties of Unideposited TFHBM’s of Titanium Oxide

Tables Icon

Table 2 Deposition Parameters and Optical Properties of Bideposited TFHBM’s of Titanium Oxide

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

x, y, z; ω=n12ωuτxuτx+n22ωunxunx+n32ωubxubx.
uτx=ux cos ψ+uy cosπxΩ+uz sinπxΩsin ψ,
unx=ux sin ψ-uy cosπxΩ+uz sinπxΩcos ψ,
ubx=uy sinπxΩ-uz cosπxΩ
λ0Bragg=Ωnp+n3
Δλ0Bragg=2Ω|np-n3|
np=sin2 ψ/n12+cos2 ψ/n22-1/2
Δn=n3-np
ξ=0, Δξ, 2Δξ, 3Δξ,,
ξ=0, π, 2π, 3π,.
ξ=0, π, 2π+Δξ, 3π+Δξ, 4π+2Δξ, 5π+2Δξ,,
ξ=0, π+Δξ, 2π+2Δξ, 3π+3Δξ,.
G=2navΩλ0=λ0Braggλ0.
nav=np+n3/2
np=nav-Δn/2,
n3=nav+Δn/2.
ξj=ξ1+j-1ξN-ξ1/N-1,
dj/λ=G|ξN-ξ1|/2πnavN.

Metrics