Abstract

Focusing on the use of planar waveguides as platforms for highly sensitive attenuated total reflection spectroscopy of organic thin films, we extend the ray optics model to provide absorbance expressions for the case of dichroic layers immobilized on the waveguide surface. Straightforward expressions are derived for the limiting case of weakly absorbing, anisotropically oriented molecules in the waveguide–cladding region. The second major focus is on the accuracy of the ray optics model. This model assumes that the introduction of absorbing species, either in the bulk cladding or as an adlayer on the waveguide surface, only causes a small perturbation to the original waveguide-mode profile. We investigate the accuracy of this assumption and the conditions under which it is valid. A comparison to an exact calculation by use of the electromagnetic wave theory is implemented, and the discrepancy of the ray optics model is determined for various waveguide configurations. We find that in typical situations in which waveguide-absorbance measurements are used to study organic thin films (k l/n l ≤ 10-1, h/λ ≈ 10-2) the discrepancy between the ray optics and the exact calculations is only a few percent (2–3%).

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
    [CrossRef]
  2. M. Losche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997).
    [CrossRef]
  3. A. Ulman, An Introduction to Ultrathin Organic Films (Academic, San Diego, 1991); A. Ulman, Characterization of Organic Thin Films (Butterworth-Heinemann, Stoneham, Mass., 1995).
  4. C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996).
    [CrossRef]
  5. B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996).
    [CrossRef]
  6. L. Kang, R. E. Dessey, “Slab waveguides in chemistry,” CRC Crit. Rev. Anal. Chem. 21, 377–388 (1990).
    [CrossRef]
  7. T. E. Plowman, S. S. Saavedra, W. M. Reichert, “Planar integrated optical methods for examining thin films and their surface adlayers,” Biomaterials 19, 341–355 (1998).
    [CrossRef] [PubMed]
  8. P. W. Bohn, “Localized optical phenomena and the characterization of materials interfaces,” Ann. Rev. Mater. Sci. 27, 469–498 (1997).
    [CrossRef]
  9. D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
    [CrossRef]
  10. S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
    [CrossRef]
  11. D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid. Interface Sci. 157, 41–49 (1993).
    [CrossRef]
  12. T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
    [CrossRef]
  13. D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
    [CrossRef]
  14. L. Yang, S. S. Saavedra, “Chemical sensing using sol-gel derived planar waveguides and incicator phases,” Anal. Chem. 67, 1307–1314 (1995).
    [CrossRef]
  15. P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Amer. Chem. Soc. 120, 1665–1671 (1998); P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Amer. Chem. Soc. 119, 560–570 (1997); P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir–Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Amer. Chem. Soc. 100, 775–784 (1996).
    [CrossRef]
  16. B. A. Bolton, J. R. Schere, “Raman-spectra and water-absorption of bovine serum-albumin,” J. Phys. Chem. 93, 7635–7640 (1989).
    [CrossRef]
  17. W. M. Reichert, J. T. Ives, P. A. Suci, J. D. Andrade, “Excitation of fluorescent emission from solutions at the surface of polymer thin-film wave-guides—an integrated-optics technique for the sensing of fluorescence at the polymer-solution interface,” Appl. Spectrosc. 41, 636–640 (1987).
    [CrossRef]
  18. S. J. Choquette, L. Locasio-Brown, R. A. Durst, “Planar wave-guide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
    [CrossRef]
  19. K. Itoh, A. Fujishima, “An application of optical waveguides to electrochemistry: construction of optical waveguide electrodes,” J. Phys. Chem. 92, 7043–7045 (1988); D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
    [CrossRef] [PubMed]
  20. J. S. Kanger, C. Otto, M. Slotboom, J. J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,” J. Phys. Chem. 100, 3288–3292 (1996).
    [CrossRef]
  21. J. F. Rabolt, R. Santo, N. E. Schlotter, J. D. Swalen, “Integrated-optics and Raman-scattering molecular orientation in thin polymer-films and Langmuir–Blodgett monolayers,” IBM J. Res. Dev. 26, 209–216 (1982); J. P. Rabe, J. D. Swalen, J. F. Rabolt, “Order-disorder transitions in Langmuir–Blodgett films. 3. Polarized Raman studies of cadmium Arachidate using integrated optical techniques,” J. Chem. Phys. 86, 1601–1607 (1987).
    [CrossRef]
  22. S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
    [CrossRef] [PubMed]
  23. S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
    [CrossRef]
  24. J. J. Burke, “Propagation constants of resonant waves on homogeneous, isotropic slab waveguides,” Appl. Opt. 9, 2444–2452 (1970).
    [CrossRef] [PubMed]
  25. I. P. Kaminow, W. L. Mammel, H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974).
    [CrossRef] [PubMed]
  26. J. Chilwell, I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753 (1984).
    [CrossRef]
  27. J. F. Offersgaard, “Waveguides formed by multiple layers of dielectric, semiconductor, or metallic media with optical loss and anisotropy,” J. Opt. Soc. Am. A 12, 2122–2128 (1995).
    [CrossRef]
  28. A. J. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Tech. LT-5, 660–667 (1987).
    [CrossRef]
  29. L. Li, “Determination of bound modes of multilayer for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 11, 984–991 (1994).
    [CrossRef]
  30. G. L. Mitchell, “Absorption spectroscopy in scattering samples using integrated optics,” J. Quantum Electron. QE-13, 173–176 (1977).
    [CrossRef]
  31. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  32. J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron. QE-7, 339–344 (1971).
    [CrossRef]
  33. N. S. Kapany, J. J. Burke, Optical Waveguides (Academic, New York, 1972).
  34. J. N. Polky, J. H. Harris, “Absorption from thin-film waveguides,” J. Opt. Soc. Am. 62, 1081–1087 (1972).
    [CrossRef]
  35. A. Reisinger, “Characteristics of optical guided modes in lossy waveguides,” Appl. Opt. 12, 1015–1025 (1973).
    [CrossRef] [PubMed]
  36. G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
    [CrossRef]
  37. J. E. Lee, S. S. Saavedra, “Molecular orientation in heme protein films adsorbed to hydrophilic and hydrophobic glass surfaces,” Langmuir 12, 4025–4032 (1996); J. E. Lee, S. S. Saavedra, “Molecular orientation in adsorbed cytochrome c films by planar waveguide linear dichroism,” in Proteins and Interfaces II: Fundamentals and Applications, T. A. Horbett, J. L. Brash, eds., ACS Symposium Series602, 269–279 (1995).
  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes (Cambridge, New York, 1992).
  39. Expressions for the Goos–Hänchen shift that appear in Ref. 22, which were taken from T. Hirshfeld, Appl. Spectrosc.31, 243 (1977), are incorrect. The correct expressions are given, for instance, in Ref. 31.
  40. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).
  41. F. M. Mirabella, N. J. Harrick, Internal Reflection Spectroscopy: Review and Supplement (Harrick Scientific Corporation, New York, 1985).
  42. H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986).
    [CrossRef]
  43. F. Horowitz, S. B. Mendes, “Envelope and waveguide methods: a comparative study of PbF2 and CeO2 birefringent films,” Appl. Opt. 33, 2659–2663 (1994).
    [CrossRef] [PubMed]
  44. F. A. Hopf, G. I. Stegeman, Applied Classical Electrodynamics, Vol. I: Linear Optics (Krieger, Malabar, Fla., 1985).

1998

T. E. Plowman, S. S. Saavedra, W. M. Reichert, “Planar integrated optical methods for examining thin films and their surface adlayers,” Biomaterials 19, 341–355 (1998).
[CrossRef] [PubMed]

P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Amer. Chem. Soc. 120, 1665–1671 (1998); P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Amer. Chem. Soc. 119, 560–570 (1997); P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir–Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Amer. Chem. Soc. 100, 775–784 (1996).
[CrossRef]

1997

P. W. Bohn, “Localized optical phenomena and the characterization of materials interfaces,” Ann. Rev. Mater. Sci. 27, 469–498 (1997).
[CrossRef]

M. Losche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997).
[CrossRef]

1996

C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996).
[CrossRef]

B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996).
[CrossRef]

J. S. Kanger, C. Otto, M. Slotboom, J. J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,” J. Phys. Chem. 100, 3288–3292 (1996).
[CrossRef]

S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
[CrossRef]

J. E. Lee, S. S. Saavedra, “Molecular orientation in heme protein films adsorbed to hydrophilic and hydrophobic glass surfaces,” Langmuir 12, 4025–4032 (1996); J. E. Lee, S. S. Saavedra, “Molecular orientation in adsorbed cytochrome c films by planar waveguide linear dichroism,” in Proteins and Interfaces II: Fundamentals and Applications, T. A. Horbett, J. L. Brash, eds., ACS Symposium Series602, 269–279 (1995).

1995

J. F. Offersgaard, “Waveguides formed by multiple layers of dielectric, semiconductor, or metallic media with optical loss and anisotropy,” J. Opt. Soc. Am. A 12, 2122–2128 (1995).
[CrossRef]

L. Yang, S. S. Saavedra, “Chemical sensing using sol-gel derived planar waveguides and incicator phases,” Anal. Chem. 67, 1307–1314 (1995).
[CrossRef]

1994

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[CrossRef]

F. Horowitz, S. B. Mendes, “Envelope and waveguide methods: a comparative study of PbF2 and CeO2 birefringent films,” Appl. Opt. 33, 2659–2663 (1994).
[CrossRef] [PubMed]

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

L. Li, “Determination of bound modes of multilayer for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 11, 984–991 (1994).
[CrossRef]

1993

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid. Interface Sci. 157, 41–49 (1993).
[CrossRef]

1992

S. J. Choquette, L. Locasio-Brown, R. A. Durst, “Planar wave-guide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

1991

S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
[CrossRef]

1990

L. Kang, R. E. Dessey, “Slab waveguides in chemistry,” CRC Crit. Rev. Anal. Chem. 21, 377–388 (1990).
[CrossRef]

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
[CrossRef] [PubMed]

1989

B. A. Bolton, J. R. Schere, “Raman-spectra and water-absorption of bovine serum-albumin,” J. Phys. Chem. 93, 7635–7640 (1989).
[CrossRef]

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[CrossRef]

1988

K. Itoh, A. Fujishima, “An application of optical waveguides to electrochemistry: construction of optical waveguide electrodes,” J. Phys. Chem. 92, 7043–7045 (1988); D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

1987

W. M. Reichert, J. T. Ives, P. A. Suci, J. D. Andrade, “Excitation of fluorescent emission from solutions at the surface of polymer thin-film wave-guides—an integrated-optics technique for the sensing of fluorescence at the polymer-solution interface,” Appl. Spectrosc. 41, 636–640 (1987).
[CrossRef]

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

A. J. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Tech. LT-5, 660–667 (1987).
[CrossRef]

1984

1982

J. F. Rabolt, R. Santo, N. E. Schlotter, J. D. Swalen, “Integrated-optics and Raman-scattering molecular orientation in thin polymer-films and Langmuir–Blodgett monolayers,” IBM J. Res. Dev. 26, 209–216 (1982); J. P. Rabe, J. D. Swalen, J. F. Rabolt, “Order-disorder transitions in Langmuir–Blodgett films. 3. Polarized Raman studies of cadmium Arachidate using integrated optical techniques,” J. Chem. Phys. 86, 1601–1607 (1987).
[CrossRef]

1977

G. L. Mitchell, “Absorption spectroscopy in scattering samples using integrated optics,” J. Quantum Electron. QE-13, 173–176 (1977).
[CrossRef]

1974

1973

1972

1971

J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron. QE-7, 339–344 (1971).
[CrossRef]

1970

Allara, D. L.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Andrade, J. D.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

W. M. Reichert, J. T. Ives, P. A. Suci, J. D. Andrade, “Excitation of fluorescent emission from solutions at the surface of polymer thin-film wave-guides—an integrated-optics technique for the sensing of fluorescence at the polymer-solution interface,” Appl. Spectrosc. 41, 636–640 (1987).
[CrossRef]

Bohn, P. W.

P. W. Bohn, “Localized optical phenomena and the characterization of materials interfaces,” Ann. Rev. Mater. Sci. 27, 469–498 (1997).
[CrossRef]

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[CrossRef]

Bolton, B. A.

B. A. Bolton, J. R. Schere, “Raman-spectra and water-absorption of bovine serum-albumin,” J. Phys. Chem. 93, 7635–7640 (1989).
[CrossRef]

Burke, J. J.

Burke, L. J. J.

S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
[CrossRef]

Chandross, E. A.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Chilwell, J.

Choquette, S. J.

S. J. Choquette, L. Locasio-Brown, R. A. Durst, “Planar wave-guide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

Cropek, D. M.

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

Culshaw, B.

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

Dessey, R. E.

L. Kang, R. E. Dessey, “Slab waveguides in chemistry,” CRC Crit. Rev. Anal. Chem. 21, 377–388 (1990).
[CrossRef]

Dunphy, D. R.

S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
[CrossRef]

Durst, R. A.

S. J. Choquette, L. Locasio-Brown, R. A. Durst, “Planar wave-guide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

Edmiston, P. L.

P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Amer. Chem. Soc. 120, 1665–1671 (1998); P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Amer. Chem. Soc. 119, 560–570 (1997); P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir–Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Amer. Chem. Soc. 100, 775–784 (1996).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes (Cambridge, New York, 1992).

Fujishima, A.

K. Itoh, A. Fujishima, “An application of optical waveguides to electrochemistry: construction of optical waveguide electrodes,” J. Phys. Chem. 92, 7043–7045 (1988); D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

Garoff, S.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Garrison, M. D.

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[CrossRef]

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid. Interface Sci. 157, 41–49 (1993).
[CrossRef]

Ghatak, A. J.

A. J. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Tech. LT-5, 660–667 (1987).
[CrossRef]

Greve, J. J.

J. S. Kanger, C. Otto, M. Slotboom, J. J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,” J. Phys. Chem. 100, 3288–3292 (1996).
[CrossRef]

Harrick, N. J.

F. M. Mirabella, N. J. Harrick, Internal Reflection Spectroscopy: Review and Supplement (Harrick Scientific Corporation, New York, 1985).

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).

Harris, J. H.

Haruna, M.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Hodgkinson, I.

Hopf, F. A.

F. A. Hopf, G. I. Stegeman, Applied Classical Electrodynamics, Vol. I: Linear Optics (Krieger, Malabar, Fla., 1985).

Horowitz, F.

Israelachvili, J.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Itoh, K.

K. Itoh, A. Fujishima, “An application of optical waveguides to electrochemistry: construction of optical waveguide electrodes,” J. Phys. Chem. 92, 7043–7045 (1988); D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

Ives, J. T.

Kaminow, I. P.

Kang, L.

L. Kang, R. E. Dessey, “Slab waveguides in chemistry,” CRC Crit. Rev. Anal. Chem. 21, 377–388 (1990).
[CrossRef]

Kanger, J. S.

J. S. Kanger, C. Otto, M. Slotboom, J. J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,” J. Phys. Chem. 100, 3288–3292 (1996).
[CrossRef]

Kapany, N. S.

N. S. Kapany, J. J. Burke, Optical Waveguides (Academic, New York, 1972).

Lee, J. E.

J. E. Lee, S. S. Saavedra, “Molecular orientation in heme protein films adsorbed to hydrophilic and hydrophobic glass surfaces,” Langmuir 12, 4025–4032 (1996); J. E. Lee, S. S. Saavedra, “Molecular orientation in adsorbed cytochrome c films by planar waveguide linear dichroism,” in Proteins and Interfaces II: Fundamentals and Applications, T. A. Horbett, J. L. Brash, eds., ACS Symposium Series602, 269–279 (1995).

S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
[CrossRef]

Li, L.

S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
[CrossRef]

L. Li, “Determination of bound modes of multilayer for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 11, 984–991 (1994).
[CrossRef]

Locasio-Brown, L.

S. J. Choquette, L. Locasio-Brown, R. A. Durst, “Planar wave-guide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

Losche, M.

M. Losche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986).
[CrossRef]

Mammel, W. L.

McCarthy, T. J.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Mendes, S. B.

S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
[CrossRef]

F. Horowitz, S. B. Mendes, “Envelope and waveguide methods: a comparative study of PbF2 and CeO2 birefringent films,” Appl. Opt. 33, 2659–2663 (1994).
[CrossRef] [PubMed]

Midwinter, J. E.

J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron. QE-7, 339–344 (1971).
[CrossRef]

Mirabella, F. M.

F. M. Mirabella, N. J. Harrick, Internal Reflection Spectroscopy: Review and Supplement (Harrick Scientific Corporation, New York, 1985).

Mitchell, G. L.

G. L. Mitchell, “Absorption spectroscopy in scattering samples using integrated optics,” J. Quantum Electron. QE-13, 173–176 (1977).
[CrossRef]

Murray, R.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Nicolini, C.

C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996).
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Offersgaard, J. F.

Otto, C.

J. S. Kanger, C. Otto, M. Slotboom, J. J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,” J. Phys. Chem. 100, 3288–3292 (1996).
[CrossRef]

Pease, R. F.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Plowman, T. E.

T. E. Plowman, S. S. Saavedra, W. M. Reichert, “Planar integrated optical methods for examining thin films and their surface adlayers,” Biomaterials 19, 341–355 (1998).
[CrossRef] [PubMed]

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[CrossRef]

Polky, J. N.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes (Cambridge, New York, 1992).

Rabolt, J. F.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

J. F. Rabolt, R. Santo, N. E. Schlotter, J. D. Swalen, “Integrated-optics and Raman-scattering molecular orientation in thin polymer-films and Langmuir–Blodgett monolayers,” IBM J. Res. Dev. 26, 209–216 (1982); J. P. Rabe, J. D. Swalen, J. F. Rabolt, “Order-disorder transitions in Langmuir–Blodgett films. 3. Polarized Raman studies of cadmium Arachidate using integrated optical techniques,” J. Chem. Phys. 86, 1601–1607 (1987).
[CrossRef]

Ratner, B. J.

B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996).
[CrossRef]

Reichert, W. M.

T. E. Plowman, S. S. Saavedra, W. M. Reichert, “Planar integrated optical methods for examining thin films and their surface adlayers,” Biomaterials 19, 341–355 (1998).
[CrossRef] [PubMed]

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[CrossRef]

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid. Interface Sci. 157, 41–49 (1993).
[CrossRef]

S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
[CrossRef]

S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
[CrossRef] [PubMed]

W. M. Reichert, J. T. Ives, P. A. Suci, J. D. Andrade, “Excitation of fluorescent emission from solutions at the surface of polymer thin-film wave-guides—an integrated-optics technique for the sensing of fluorescence at the polymer-solution interface,” Appl. Spectrosc. 41, 636–640 (1987).
[CrossRef]

Reisinger, A.

Saavedra, S. S.

T. E. Plowman, S. S. Saavedra, W. M. Reichert, “Planar integrated optical methods for examining thin films and their surface adlayers,” Biomaterials 19, 341–355 (1998).
[CrossRef] [PubMed]

P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Amer. Chem. Soc. 120, 1665–1671 (1998); P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Amer. Chem. Soc. 119, 560–570 (1997); P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir–Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Amer. Chem. Soc. 100, 775–784 (1996).
[CrossRef]

S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
[CrossRef]

J. E. Lee, S. S. Saavedra, “Molecular orientation in heme protein films adsorbed to hydrophilic and hydrophobic glass surfaces,” Langmuir 12, 4025–4032 (1996); J. E. Lee, S. S. Saavedra, “Molecular orientation in adsorbed cytochrome c films by planar waveguide linear dichroism,” in Proteins and Interfaces II: Fundamentals and Applications, T. A. Horbett, J. L. Brash, eds., ACS Symposium Series602, 269–279 (1995).

L. Yang, S. S. Saavedra, “Chemical sensing using sol-gel derived planar waveguides and incicator phases,” Anal. Chem. 67, 1307–1314 (1995).
[CrossRef]

S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
[CrossRef]

S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
[CrossRef] [PubMed]

Santo, R.

J. F. Rabolt, R. Santo, N. E. Schlotter, J. D. Swalen, “Integrated-optics and Raman-scattering molecular orientation in thin polymer-films and Langmuir–Blodgett monolayers,” IBM J. Res. Dev. 26, 209–216 (1982); J. P. Rabe, J. D. Swalen, J. F. Rabolt, “Order-disorder transitions in Langmuir–Blodgett films. 3. Polarized Raman studies of cadmium Arachidate using integrated optical techniques,” J. Chem. Phys. 86, 1601–1607 (1987).
[CrossRef]

Schere, J. R.

B. A. Bolton, J. R. Schere, “Raman-spectra and water-absorption of bovine serum-albumin,” J. Phys. Chem. 93, 7635–7640 (1989).
[CrossRef]

Schlotter, N. E.

J. F. Rabolt, R. Santo, N. E. Schlotter, J. D. Swalen, “Integrated-optics and Raman-scattering molecular orientation in thin polymer-films and Langmuir–Blodgett monolayers,” IBM J. Res. Dev. 26, 209–216 (1982); J. P. Rabe, J. D. Swalen, J. F. Rabolt, “Order-disorder transitions in Langmuir–Blodgett films. 3. Polarized Raman studies of cadmium Arachidate using integrated optical techniques,” J. Chem. Phys. 86, 1601–1607 (1987).
[CrossRef]

Shenoy, M. R.

A. J. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Tech. LT-5, 660–667 (1987).
[CrossRef]

Slotboom, M.

J. S. Kanger, C. Otto, M. Slotboom, J. J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,” J. Phys. Chem. 100, 3288–3292 (1996).
[CrossRef]

Stegeman, G. I.

F. A. Hopf, G. I. Stegeman, Applied Classical Electrodynamics, Vol. I: Linear Optics (Krieger, Malabar, Fla., 1985).

Stephens, D. A.

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[CrossRef]

Stewart, G.

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

Suci, P. A.

Suhara, T.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Swalen, J. D.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

J. F. Rabolt, R. Santo, N. E. Schlotter, J. D. Swalen, “Integrated-optics and Raman-scattering molecular orientation in thin polymer-films and Langmuir–Blodgett monolayers,” IBM J. Res. Dev. 26, 209–216 (1982); J. P. Rabe, J. D. Swalen, J. F. Rabolt, “Order-disorder transitions in Langmuir–Blodgett films. 3. Polarized Raman studies of cadmium Arachidate using integrated optical techniques,” J. Chem. Phys. 86, 1601–1607 (1987).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes (Cambridge, New York, 1992).

Thyagarajan, K.

A. J. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Tech. LT-5, 660–667 (1987).
[CrossRef]

Ulman, A.

A. Ulman, An Introduction to Ultrathin Organic Films (Academic, San Diego, 1991); A. Ulman, Characterization of Organic Thin Films (Butterworth-Heinemann, Stoneham, Mass., 1995).

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes (Cambridge, New York, 1992).

Walker, D. S.

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[CrossRef]

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid. Interface Sci. 157, 41–49 (1993).
[CrossRef]

Weber, H. P.

Wynne, K. J.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Yang, L.

L. Yang, S. S. Saavedra, “Chemical sensing using sol-gel derived planar waveguides and incicator phases,” Anal. Chem. 67, 1307–1314 (1995).
[CrossRef]

Yu, H.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Anal. Chem.

D. A. Stephens, P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
[CrossRef]

L. Yang, S. S. Saavedra, “Chemical sensing using sol-gel derived planar waveguides and incicator phases,” Anal. Chem. 67, 1307–1314 (1995).
[CrossRef]

S. J. Choquette, L. Locasio-Brown, R. A. Durst, “Planar wave-guide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

S. S. Saavedra, W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
[CrossRef] [PubMed]

Ann. Rev. Mater. Sci.

P. W. Bohn, “Localized optical phenomena and the characterization of materials interfaces,” Ann. Rev. Mater. Sci. 27, 469–498 (1997).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Biomaterials

T. E. Plowman, S. S. Saavedra, W. M. Reichert, “Planar integrated optical methods for examining thin films and their surface adlayers,” Biomaterials 19, 341–355 (1998).
[CrossRef] [PubMed]

CRC Crit. Rev. Anal. Chem.

L. Kang, R. E. Dessey, “Slab waveguides in chemistry,” CRC Crit. Rev. Anal. Chem. 21, 377–388 (1990).
[CrossRef]

Curr. Opin. Solid State Mater. Sci.

M. Losche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997).
[CrossRef]

IBM J. Res. Dev.

J. F. Rabolt, R. Santo, N. E. Schlotter, J. D. Swalen, “Integrated-optics and Raman-scattering molecular orientation in thin polymer-films and Langmuir–Blodgett monolayers,” IBM J. Res. Dev. 26, 209–216 (1982); J. P. Rabe, J. D. Swalen, J. F. Rabolt, “Order-disorder transitions in Langmuir–Blodgett films. 3. Polarized Raman studies of cadmium Arachidate using integrated optical techniques,” J. Chem. Phys. 86, 1601–1607 (1987).
[CrossRef]

IEEE J. Quantum Electron.

J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron. QE-7, 339–344 (1971).
[CrossRef]

J. Amer. Chem. Soc.

P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Amer. Chem. Soc. 120, 1665–1671 (1998); P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Amer. Chem. Soc. 119, 560–570 (1997); P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir–Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Amer. Chem. Soc. 100, 775–784 (1996).
[CrossRef]

J. Colloid. Interface Sci.

D. S. Walker, M. D. Garrison, W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid. Interface Sci. 157, 41–49 (1993).
[CrossRef]

J. Lightwave Tech.

A. J. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Tech. LT-5, 660–667 (1987).
[CrossRef]

J. Mol. Recog.

B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. Chem.

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

B. A. Bolton, J. R. Schere, “Raman-spectra and water-absorption of bovine serum-albumin,” J. Phys. Chem. 93, 7635–7640 (1989).
[CrossRef]

K. Itoh, A. Fujishima, “An application of optical waveguides to electrochemistry: construction of optical waveguide electrodes,” J. Phys. Chem. 92, 7043–7045 (1988); D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

J. S. Kanger, C. Otto, M. Slotboom, J. J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,” J. Phys. Chem. 100, 3288–3292 (1996).
[CrossRef]

J. Quantum Electron.

G. L. Mitchell, “Absorption spectroscopy in scattering samples using integrated optics,” J. Quantum Electron. QE-13, 173–176 (1977).
[CrossRef]

Langmuir

S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
[CrossRef]

J. E. Lee, S. S. Saavedra, “Molecular orientation in heme protein films adsorbed to hydrophilic and hydrophobic glass surfaces,” Langmuir 12, 4025–4032 (1996); J. E. Lee, S. S. Saavedra, “Molecular orientation in adsorbed cytochrome c films by planar waveguide linear dichroism,” in Proteins and Interfaces II: Fundamentals and Applications, T. A. Horbett, J. L. Brash, eds., ACS Symposium Series602, 269–279 (1995).

S. S. Saavedra, W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
[CrossRef]

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Opt. Quantum Electron.

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

Thin Solid Films

C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996).
[CrossRef]

T. E. Plowman, M. D. Garrison, D. S. Walker, W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
[CrossRef]

Other

A. Ulman, An Introduction to Ultrathin Organic Films (Academic, San Diego, 1991); A. Ulman, Characterization of Organic Thin Films (Butterworth-Heinemann, Stoneham, Mass., 1995).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes (Cambridge, New York, 1992).

Expressions for the Goos–Hänchen shift that appear in Ref. 22, which were taken from T. Hirshfeld, Appl. Spectrosc.31, 243 (1977), are incorrect. The correct expressions are given, for instance, in Ref. 31.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).

F. M. Mirabella, N. J. Harrick, Internal Reflection Spectroscopy: Review and Supplement (Harrick Scientific Corporation, New York, 1985).

H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986).
[CrossRef]

F. A. Hopf, G. I. Stegeman, Applied Classical Electrodynamics, Vol. I: Linear Optics (Krieger, Malabar, Fla., 1985).

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

N. S. Kapany, J. J. Burke, Optical Waveguides (Academic, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the waveguide configuration treated with the ray optics model. Total internal reflection is frustrated at the waveguide–cladding interface.

Fig. 2
Fig. 2

Schematic representation of the waveguide structure with an absorbing cladding medium.

Fig. 3
Fig. 3

Schematic representation of the waveguide structure with an absorbing dichroic adlayer on the upper surface of the guiding film. Also indicated is the adopted coordinate system.

Fig. 4
Fig. 4

Calculations for a bulk absorbing cladding medium with a variable extinction coefficient, k c . (a) Absorbance values calculated with the ray optics (dashed lines) and the wave (solid lines) models. (b) Relative error of the ray optics model compared with the wave model calculation. The parameters used in the calculations are wavelength λ = 550 nm, waveguide thickness t = 400 nm, waveguide index of refraction n w = 1.56, substrate index of refraction n s = 1.46, and real part of cladding index of refraction n c = 1.33.

Fig. 5
Fig. 5

Calculations for an isotropic absorbing adlayer with a variable extinction coefficient, k l . (a) Absorbance values calculated by the ray optics (dashed lines) and the wave (solid lines) models. (b) Relative error of the ray optics model compared with the wave model calculation. The parameters used in the calculations are wavelength λ = 550 nm, waveguide thickness t = 400 nm, waveguide index of refraction n w = 1.56, substrate index of refraction n s = 1.46, real part of the adlayer index of refraction n l = 1.33, and cladding index of refraction n c = 1.33.

Fig. 6
Fig. 6

Relative error of the ray model compared with the wave model for an absorbing adlayer. The waveguide configuration is the same as described in Fig. 5, except for waveguide thickness t = 180 nm and waveguide index of refraction n w = 1.80.

Fig. 7
Fig. 7

Calculations for a dichroic adlayer with a variable dipole orientation angle, θ̅. The extinction coefficients (k x , k y , and k z ) are described in Eqs. (17) and (18). Absorbance values calculated by the ray optics (dashed curves) and the wave (solid curves) models for (a) k = 0.01 and (b) k = 0.1. Relative error of the dichroic ratio for the ray optics model and for expressions in Ref. [37] with (c) k = 0.01 and (d) k = 0.1. The parameters used in the calculations are wavelength λ = 550 nm, waveguide thickness t = 400 nm, waveguide index of refraction n w = 1.56, substrate index of refraction n s = 1.46, real part of the adlayer index of refraction n l = 1.33, and cladding index of refraction n c = 1.33.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

ε¯=ε0nx2000ny2000nz2,
A=4πLλ ln 10 NIm,
A=-log10Rηη1-Rln 10,
η=nw2-N21/22NLteff,
teff,TE=t+λ/2πNTE2-nc21/2+λ/2πNTE2-ns21/2,
teff,TM=t+λ/2πqcNTM2-nc21/2+λ/2πqsNTM2-ns21/2,
qc,sNTMnw2+NTMnc,s2-1.
4πkλ ln 10=εc.
bwgAεc.
bwg=ηde.
bb,wg=λ4πNTE2-nc21/22ncnw2-NTE2teff,TENTEnw2-nc2 L,
bb,wg=λ4πNTM2-nc21/2×2ncnw2nw2-NTM22NTM2-nc2teff,TMNTMnw4NTM2-nc2+nc4nw2-NTM2 L.
bl,wg=h2nlnw2-NTE2teff,TENTEnw2-nc2 L,
bl,wg=h×2nlnw2nw2-NTM21+nc/nl4NTM2-nc2teff,TMNTMnw4NTM2-nc2+nc4nw2-NTM2 L,
bl,wg=h 2nlfynw2-NTE2teff,TENTEnw2-nc2 L,
bl,wg=h×2nlnw2nw2-NTM2NTM2-nc2fx+nc/nl4NTM2fzteff,TMNTMnw4NTM2-nc2+nc4nw2-NTM2 L,
kx=ky=32k sin2θ¯,
kz=3k cos2θ¯.
p=ql,
l=leˆ,
α¯=llmωo2-ω2-iωΓ,
kij=ρ2ε0Imα¯ij,
f=fθ, ϕNθ, ϕsinθdθdϕNθ, ϕsinθdθdϕ,
lxlylz=cos ϕ-sin ϕ0sin ϕcos ϕ0001cos θ0sin θ010-sin θ0cos θ00l=cos ϕ sin θsin ϕ sin θcos θl.
Nθ, ϕ=Nθ,
lx2=ly2=12 l2 sin2θNθsinθdθ Nθsinθdθ,
lz2=l2 cos2θNθsinθdθ Nθsinθdθ,
lilj=0,  for ij.
Nθ=δθ-θ¯,
lx2=ly2=12 l2 sin2θ¯,
lz2=l2 cos2θ¯.
lx2=ly2=lz2=1/3l2.
kx=ky=3/2k sin2θ¯,
kz=3k cos2θ¯.
lxlylz=cos ϕ-sin ϕ0sin ϕcos ϕ00011000cos θ-sin θ0sin θcos θ×cos α-sin α0sin αcos α0001l1l20.
lxlylz=l1cos ϕ cos α-sin ϕ sin α cos θ+l2-cos ϕ sin α-sin ϕ cos α cos θl1sin ϕ cos α+cos ϕ sin α cos θ+l2-sin ϕ sin α+cos ϕ cos α cos θl1sin α sin θ+l2cos α sin θ.
Nθ, ϕ, α=Nθ,
lx2=ly2=14 l2 Nθ1+cos2θsinθdθ Nθsinθdθ,
lz2=12 l2 Nθsin2θsinθdθ Nθsinθdθ,
lxly=lxlz=lylz=0,
lx2=ly2=lz2=1/3l2.
Nθ=δθ-θ¯,
lx2=ly2=14l21+cos2θ¯,
lz2=12l2 sin2θ¯.
kx=ky=3/4k1+cos2θ¯,
kz=3/2k sin2θ¯.
fikik.

Metrics