Abstract

Sapphire fibers with diameters of 325–850 µm were plastically bent by CO2 laser beams with typical bending radii as small as 2.8 mm. The additional optical loss caused by a single bend was less than 0.1 dB (at 900 nm), the damage threshold of the bent fibers was higher than 150 MW/cm2 for Nd:YAG laser pulses, and the high mechanical strength of the bending area was also proved. Several successful applications of bent sapphire fibers have shown that plastically bent sapphire fibers are promising for use in IR sensing and power-delivery applications.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Magel, D. H. Jundt, M. M. Fejer, R. L. Byer, “Low-loss single-crystal sapphire optical fibers,” in Infrared Optical Materials and Fibers IV, P. Klocek, ed., Proc. SPIE618, 89–94 (1986).
    [CrossRef]
  2. R. K. Numbling, J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
    [CrossRef]
  3. L. Tong, “High-temperature single-crystal fibers and fiber-optic sensors for high-temperature,” Ph.D. dissertation (Zhejiang University, Hangzhou, China, 1997).
  4. G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
    [CrossRef] [PubMed]
  5. H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
    [CrossRef]
  6. G. N. Morscher, H. Sayir, “Bend properties of sapphire fibers at elevated temperatures. I. Bend survivability,” Mater. Sci. Eng. A 190, 267–274 (1995).
    [CrossRef]
  7. H. Sayir, A. Sayir, K. P. D. Lagerlof, “Temperature dependent brittle fracture of undoped and impurity dopped sapphire fibers,” Ceram. Eng. Sci. Proc. 14, 581–589 (1993).
    [CrossRef]
  8. S. J. Schneider, ed., Engineered Materials Handbook (ASM International, Materials Park, Ohio, 1992), Vol. 4, p. 752.
  9. A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 35–42 (1996).
    [CrossRef]
  10. R. W. Waynant, S. Oshry, M. Fink, “Infrared measurements of sapphire fibers for medical applications,” Appl. Opt. 32, 390–392 (1993).
    [CrossRef] [PubMed]
  11. J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Er:YAG laser energy,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1995).
    [CrossRef]
  12. M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, R. A. Greenwell, D. K. Paul, H. H. Yuce, eds., Proc. SPIE2290, 378–386 (1994).
    [CrossRef]
  13. L. Tong, Y. Shen, L. Ye, “Performance improvement of sapphire fiber-optic sensor using a U-shaped reference fiber,” in Optical and Fiber Optic Sensor Systems, K. D. Bennett, S. Huang, D. A. Jackson, eds., Proc. SPIE3555, 236–243 (1998).
    [CrossRef]
  14. L. Tong, Y. Shen, L. Ye, “Performance improvement of radiation-based high-temperature fiber-optic sensor by means of curved sapphire fiber,” Sens. Actuators A 75, 35–40 (1999).
    [CrossRef]
  15. J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of erbium:YAG laser energy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 60–70 (1995).
    [CrossRef]

1999 (1)

L. Tong, Y. Shen, L. Ye, “Performance improvement of radiation-based high-temperature fiber-optic sensor by means of curved sapphire fiber,” Sens. Actuators A 75, 35–40 (1999).
[CrossRef]

1997 (1)

1995 (1)

G. N. Morscher, H. Sayir, “Bend properties of sapphire fibers at elevated temperatures. I. Bend survivability,” Mater. Sci. Eng. A 190, 267–274 (1995).
[CrossRef]

1993 (3)

1991 (1)

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

Bates, H. E.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Er:YAG laser energy,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1995).
[CrossRef]

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of erbium:YAG laser energy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 60–70 (1995).
[CrossRef]

Byer, R. L.

G. A. Magel, D. H. Jundt, M. M. Fejer, R. L. Byer, “Low-loss single-crystal sapphire optical fibers,” in Infrared Optical Materials and Fibers IV, P. Klocek, ed., Proc. SPIE618, 89–94 (1986).
[CrossRef]

Ding, Z.

M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, R. A. Greenwell, D. K. Paul, H. H. Yuce, eds., Proc. SPIE2290, 378–386 (1994).
[CrossRef]

Dong, M.

M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, R. A. Greenwell, D. K. Paul, H. H. Yuce, eds., Proc. SPIE2290, 378–386 (1994).
[CrossRef]

Dugan, J. R.

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 35–42 (1996).
[CrossRef]

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of erbium:YAG laser energy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 60–70 (1995).
[CrossRef]

Feigelson, R. S.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

Fejer, M. M.

G. A. Magel, D. H. Jundt, M. M. Fejer, R. L. Byer, “Low-loss single-crystal sapphire optical fibers,” in Infrared Optical Materials and Fibers IV, P. Klocek, ed., Proc. SPIE618, 89–94 (1986).
[CrossRef]

Fink, M.

Fitzgibbon, J. J.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Er:YAG laser energy,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1995).
[CrossRef]

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 35–42 (1996).
[CrossRef]

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of erbium:YAG laser energy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 60–70 (1995).
[CrossRef]

Harrington, J. A.

Jundt, D. H.

G. A. Magel, D. H. Jundt, M. M. Fejer, R. L. Byer, “Low-loss single-crystal sapphire optical fibers,” in Infrared Optical Materials and Fibers IV, P. Klocek, ed., Proc. SPIE618, 89–94 (1986).
[CrossRef]

Lagerlof, K. P. D.

H. Sayir, A. Sayir, K. P. D. Lagerlof, “Temperature dependent brittle fracture of undoped and impurity dopped sapphire fibers,” Ceram. Eng. Sci. Proc. 14, 581–589 (1993).
[CrossRef]

Magel, G. A.

G. A. Magel, D. H. Jundt, M. M. Fejer, R. L. Byer, “Low-loss single-crystal sapphire optical fibers,” in Infrared Optical Materials and Fibers IV, P. Klocek, ed., Proc. SPIE618, 89–94 (1986).
[CrossRef]

Merberg, G. N.

Morscher, G. N.

G. N. Morscher, H. Sayir, “Bend properties of sapphire fibers at elevated temperatures. I. Bend survivability,” Mater. Sci. Eng. A 190, 267–274 (1995).
[CrossRef]

Numbling, R. K.

Oshry, S.

Perrotta, A. J.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

Philbrick, M. J.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Er:YAG laser energy,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1995).
[CrossRef]

Pryshlak, A. P.

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 35–42 (1996).
[CrossRef]

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Er:YAG laser energy,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1995).
[CrossRef]

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of erbium:YAG laser energy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 60–70 (1995).
[CrossRef]

Sayir, A.

H. Sayir, A. Sayir, K. P. D. Lagerlof, “Temperature dependent brittle fracture of undoped and impurity dopped sapphire fibers,” Ceram. Eng. Sci. Proc. 14, 581–589 (1993).
[CrossRef]

Sayir, H.

G. N. Morscher, H. Sayir, “Bend properties of sapphire fibers at elevated temperatures. I. Bend survivability,” Mater. Sci. Eng. A 190, 267–274 (1995).
[CrossRef]

H. Sayir, A. Sayir, K. P. D. Lagerlof, “Temperature dependent brittle fracture of undoped and impurity dopped sapphire fibers,” Ceram. Eng. Sci. Proc. 14, 581–589 (1993).
[CrossRef]

Shen, Y.

L. Tong, Y. Shen, L. Ye, “Performance improvement of radiation-based high-temperature fiber-optic sensor by means of curved sapphire fiber,” Sens. Actuators A 75, 35–40 (1999).
[CrossRef]

L. Tong, Y. Shen, L. Ye, “Performance improvement of sapphire fiber-optic sensor using a U-shaped reference fiber,” in Optical and Fiber Optic Sensor Systems, K. D. Bennett, S. Huang, D. A. Jackson, eds., Proc. SPIE3555, 236–243 (1998).
[CrossRef]

Tong, L.

L. Tong, Y. Shen, L. Ye, “Performance improvement of radiation-based high-temperature fiber-optic sensor by means of curved sapphire fiber,” Sens. Actuators A 75, 35–40 (1999).
[CrossRef]

L. Tong, Y. Shen, L. Ye, “Performance improvement of sapphire fiber-optic sensor using a U-shaped reference fiber,” in Optical and Fiber Optic Sensor Systems, K. D. Bennett, S. Huang, D. A. Jackson, eds., Proc. SPIE3555, 236–243 (1998).
[CrossRef]

M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, R. A. Greenwell, D. K. Paul, H. H. Yuce, eds., Proc. SPIE2290, 378–386 (1994).
[CrossRef]

L. Tong, “High-temperature single-crystal fibers and fiber-optic sensors for high-temperature,” Ph.D. dissertation (Zhejiang University, Hangzhou, China, 1997).

Waynant, R. W.

Wu, H. F.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

Ye, L.

L. Tong, Y. Shen, L. Ye, “Performance improvement of radiation-based high-temperature fiber-optic sensor by means of curved sapphire fiber,” Sens. Actuators A 75, 35–40 (1999).
[CrossRef]

L. Tong, Y. Shen, L. Ye, “Performance improvement of sapphire fiber-optic sensor using a U-shaped reference fiber,” in Optical and Fiber Optic Sensor Systems, K. D. Bennett, S. Huang, D. A. Jackson, eds., Proc. SPIE3555, 236–243 (1998).
[CrossRef]

Appl. Opt. (3)

Ceram. Eng. Sci. Proc. (1)

H. Sayir, A. Sayir, K. P. D. Lagerlof, “Temperature dependent brittle fracture of undoped and impurity dopped sapphire fibers,” Ceram. Eng. Sci. Proc. 14, 581–589 (1993).
[CrossRef]

J. Mater. Sci. Lett. (1)

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

Mater. Sci. Eng. A (1)

G. N. Morscher, H. Sayir, “Bend properties of sapphire fibers at elevated temperatures. I. Bend survivability,” Mater. Sci. Eng. A 190, 267–274 (1995).
[CrossRef]

Sens. Actuators A (1)

L. Tong, Y. Shen, L. Ye, “Performance improvement of radiation-based high-temperature fiber-optic sensor by means of curved sapphire fiber,” Sens. Actuators A 75, 35–40 (1999).
[CrossRef]

Other (8)

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of erbium:YAG laser energy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 60–70 (1995).
[CrossRef]

S. J. Schneider, ed., Engineered Materials Handbook (ASM International, Materials Park, Ohio, 1992), Vol. 4, p. 752.

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 35–42 (1996).
[CrossRef]

G. A. Magel, D. H. Jundt, M. M. Fejer, R. L. Byer, “Low-loss single-crystal sapphire optical fibers,” in Infrared Optical Materials and Fibers IV, P. Klocek, ed., Proc. SPIE618, 89–94 (1986).
[CrossRef]

L. Tong, “High-temperature single-crystal fibers and fiber-optic sensors for high-temperature,” Ph.D. dissertation (Zhejiang University, Hangzhou, China, 1997).

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Er:YAG laser energy,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1995).
[CrossRef]

M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, R. A. Greenwell, D. K. Paul, H. H. Yuce, eds., Proc. SPIE2290, 378–386 (1994).
[CrossRef]

L. Tong, Y. Shen, L. Ye, “Performance improvement of sapphire fiber-optic sensor using a U-shaped reference fiber,” in Optical and Fiber Optic Sensor Systems, K. D. Bennett, S. Huang, D. A. Jackson, eds., Proc. SPIE3555, 236–243 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Model of bending a sapphire fiber.

Fig. 2
Fig. 2

Minimum bending radii of sapphire fibers of several diameters at room temperature.

Fig. 3
Fig. 3

Ratio of additional elastic bending loss versus original loss of sapphire fibers: A EB, additional elastic bending loss; A o, original loss; R E , elastic bending radius.

Fig. 4
Fig. 4

Experimental system for plastic bending of sapphire fibers.

Fig. 5
Fig. 5

Improved loss-measurement system for sapphire fibers.

Fig. 6
Fig. 6

Average bending losses of sapphire fibers of several diameters.

Fig. 7
Fig. 7

Weilbull probability plots of sapphire fibers broken under three-point loads at straight parts and bending parts. (a) 325- and 615-µm-diameter fibers from groups 1 and 3 (Table 1), (b) 450- and 720-µm-diameter fibers from groups 2 and 4.

Fig. 8
Fig. 8

Application of sapphire fiber-optic sensors to gas-temperature measurement in turbine engines. Sensing-temperature distributions in a combustion chamber with (a) a straight sapphire fiber array and (b) a plastically bent sapphire fiber array.

Tables (2)

Tables Icon

Table 1 Results of Loss Measurement of Plastically Bent Sapphire Fibers (measured at 900 nm)

Tables Icon

Table 2 Results of Mechanical Testing of Plastically Bent Sapphire Fibers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ=ED/2R,
Rem=ED/2σm.
AB=A-A0,

Metrics