Abstract

A high-frequency train of 5–100-ps pulses (picket fence) is proposed to improve significantly the third-harmonic frequency conversion of Nd:glass lasers that are used to generate high-contrast-shaped pulses for inertial confinement fusion (ICF) targets. High conversion efficiency of the low-power foot of a shaped ICF pulse is obtained by use of a low duty cycle, multi-gigahertz train of ∼20-ps pulses with high peak power. Even with less than 10% duty cycle, continuous illumination is maintained on the target by a combination of temporal broadening schemes. The picket fence approach is analyzed, and the practical limits are identified as applied to the National Ignition Facility laser. It is found that the higher conversion efficiency allows ∼40% more third-harmonic energy to be delivered to the target, potentially enabling the larger drive needed for high-yield ICF target designs. In addition, the frequency conversion efficiency of these short pulses saturates much more readily, which reduces the transfer of fluctuations at the fundamental and thus greatly improves the power stability of the third harmonic.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
    [CrossRef]
  2. S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
    [CrossRef]
  3. R. S. Craxton, “High efficiency frequency tripling schemes for high-power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981);D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
    [CrossRef]
  4. S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
    [CrossRef]
  5. J. D. Lindl, W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
    [CrossRef]
  6. D. J. Kuizenga, “Generation of short pulses for laser fusion in an actively mode-locked Nd:YAG laser,” Opt. Commun. 22, 156–160 (1977).
    [CrossRef]
  7. See for example, D. H. Auston, “Picosecond nonlinear optics,” in Topics in Applied Physics, S. L. Shapiro, ed. (Springer-Verlag, New York, 1977), Vol. 18, pp. 125–133, and references therein.
  8. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [CrossRef]
  9. K. Noguchi, H. Miyazawa, O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
    [CrossRef]
  10. D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
    [CrossRef]
  11. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
    [CrossRef]
  12. J. R. Murray, “Overview of the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE Suppl. 3492, 1–10 (1998).
  13. P. Wegner, S. Burkhart, J. Murray, B. Van Wonterghem, C. Widmayer, “Beamlet experiments,” ICF Quarterly9, 43–61, NTIS Document No. UCRL-LR-105821-99-1 (National Technical Information Service, Springfield, Va., 1999).
  14. D. Eimerl, J. M. Auerbach, P. W. Milloni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields,” IEEE J. Mod. Opt. 42, 1037–1067 (1995);P. W. Milloni, J. M. Auerbach, D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 230–241 (1995).
    [CrossRef]
  15. P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
    [CrossRef]
  16. O. S. Jones, D. R. Speck, S. W. Haan, “The NIF power balance,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIESuppl.3492, 78–104 (1998).
  17. L. Suter, J. Rothenberg, D. Munro, B. Van Wonterghem, S. Haan, “Exploring the limits of the National Ignition Facility’s capsule coupling,” Phys. Plasmas 7, 2092–2098 (2000).
    [CrossRef]

2000 (1)

L. Suter, J. Rothenberg, D. Munro, B. Van Wonterghem, S. Haan, “Exploring the limits of the National Ignition Facility’s capsule coupling,” Phys. Plasmas 7, 2092–2098 (2000).
[CrossRef]

1998 (1)

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

1995 (4)

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

J. D. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

D. Eimerl, J. M. Auerbach, P. W. Milloni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields,” IEEE J. Mod. Opt. 42, 1037–1067 (1995);P. W. Milloni, J. M. Auerbach, D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 230–241 (1995).
[CrossRef]

1994 (1)

K. Noguchi, H. Miyazawa, O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

1989 (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

1981 (1)

R. S. Craxton, “High efficiency frequency tripling schemes for high-power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981);D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
[CrossRef]

1977 (1)

D. J. Kuizenga, “Generation of short pulses for laser fusion in an actively mode-locked Nd:YAG laser,” Opt. Commun. 22, 156–160 (1977).
[CrossRef]

1975 (2)

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[CrossRef]

J. D. Lindl, W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
[CrossRef]

Afeyan, B. B.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Alley, W. E.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Amendt, P. A.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Auerbach, J. M.

D. Eimerl, J. M. Auerbach, P. W. Milloni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields,” IEEE J. Mod. Opt. 42, 1037–1067 (1995);P. W. Milloni, J. M. Auerbach, D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 230–241 (1995).
[CrossRef]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Auston, D. H.

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[CrossRef]

See for example, D. H. Auston, “Picosecond nonlinear optics,” in Topics in Applied Physics, S. L. Shapiro, ed. (Springer-Verlag, New York, 1977), Vol. 18, pp. 125–133, and references therein.

Barker, C. E.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Berger, R. L.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Bodner, S. E.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Burkhart, S.

P. Wegner, S. Burkhart, J. Murray, B. Van Wonterghem, C. Widmayer, “Beamlet experiments,” ICF Quarterly9, 43–61, NTIS Document No. UCRL-LR-105821-99-1 (National Technical Information Service, Springfield, Va., 1999).

Burkhart, S. C.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Coggeshall, S. V.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Colombant, D. G.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Couture, S. A.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Craxton, R. S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

R. S. Craxton, “High efficiency frequency tripling schemes for high-power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981);D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
[CrossRef]

DeYoreo, J. J.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Eimerl, D.

D. Eimerl, J. M. Auerbach, P. W. Milloni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields,” IEEE J. Mod. Opt. 42, 1037–1067 (1995);P. W. Milloni, J. M. Auerbach, D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 230–241 (1995).
[CrossRef]

Futterman, J. A.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Gardmer, J. H.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Haan, S.

L. Suter, J. Rothenberg, D. Munro, B. Van Wonterghem, S. Haan, “Exploring the limits of the National Ignition Facility’s capsule coupling,” Phys. Plasmas 7, 2092–2098 (2000).
[CrossRef]

Haan, S. W.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

O. S. Jones, D. R. Speck, S. W. Haan, “The NIF power balance,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIESuppl.3492, 78–104 (1998).

Hackel, L. A.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Harris, D. B.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Hibbard, R. L.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Hoffman, N. M.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Jones, O. S.

O. S. Jones, D. R. Speck, S. W. Haan, “The NIF power balance,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIESuppl.3492, 78–104 (1998).

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Knauer, J. P.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Krauser, W. J.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga, “Generation of short pulses for laser fusion in an actively mode-locked Nd:YAG laser,” Opt. Commun. 22, 156–160 (1977).
[CrossRef]

Lehmberg, R. H.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Levedahl, W. K.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Lindl, J. D.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

J. D. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

J. D. Lindl, W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
[CrossRef]

Liou, L. W.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

McCrory, R. L.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Mead, W. C.

J. D. Lindl, W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
[CrossRef]

Milloni, P. W.

D. Eimerl, J. M. Auerbach, P. W. Milloni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields,” IEEE J. Mod. Opt. 42, 1037–1067 (1995);P. W. Milloni, J. M. Auerbach, D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 230–241 (1995).
[CrossRef]

Mitomi, O.

K. Noguchi, H. Miyazawa, O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

Miyazawa, H.

K. Noguchi, H. Miyazawa, O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

Munro, D.

L. Suter, J. Rothenberg, D. Munro, B. Van Wonterghem, S. Haan, “Exploring the limits of the National Ignition Facility’s capsule coupling,” Phys. Plasmas 7, 2092–2098 (2000).
[CrossRef]

Murray, J.

P. Wegner, S. Burkhart, J. Murray, B. Van Wonterghem, C. Widmayer, “Beamlet experiments,” ICF Quarterly9, 43–61, NTIS Document No. UCRL-LR-105821-99-1 (National Technical Information Service, Springfield, Va., 1999).

Murray, J. R.

J. R. Murray, “Overview of the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE Suppl. 3492, 1–10 (1998).

Noguchi, K.

K. Noguchi, H. Miyazawa, O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

Norton, M. A.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Obenschain, S. P.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Phillips, L.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Pollaine, S. M.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Powell, H. T.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Powers, L. V.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Rosen, M. D.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Rothenberg, J.

L. Suter, J. Rothenberg, D. Munro, B. Van Wonterghem, S. Haan, “Exploring the limits of the National Ignition Facility’s capsule coupling,” Phys. Plasmas 7, 2092–2098 (2000).
[CrossRef]

Rowley, D. P.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Sacks, R. A.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Schmitt, A. J.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Seka, W.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Sethian, J. D.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Shestakov, A. I.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Skupsky, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Speck, D. R.

O. S. Jones, D. R. Speck, S. W. Haan, “The NIF power balance,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIESuppl.3492, 78–104 (1998).

Strobel, G. L.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Suter, L.

L. Suter, J. Rothenberg, D. Munro, B. Van Wonterghem, S. Haan, “Exploring the limits of the National Ignition Facility’s capsule coupling,” Phys. Plasmas 7, 2092–2098 (2000).
[CrossRef]

Suter, L. J.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Tabak, M.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Van Wonterghem, B.

L. Suter, J. Rothenberg, D. Munro, B. Van Wonterghem, S. Haan, “Exploring the limits of the National Ignition Facility’s capsule coupling,” Phys. Plasmas 7, 2092–2098 (2000).
[CrossRef]

P. Wegner, S. Burkhart, J. Murray, B. Van Wonterghem, C. Widmayer, “Beamlet experiments,” ICF Quarterly9, 43–61, NTIS Document No. UCRL-LR-105821-99-1 (National Technical Information Service, Springfield, Va., 1999).

Verdon, C. P.

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Weber, S. V.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Wegner, P.

P. Wegner, S. Burkhart, J. Murray, B. Van Wonterghem, C. Widmayer, “Beamlet experiments,” ICF Quarterly9, 43–61, NTIS Document No. UCRL-LR-105821-99-1 (National Technical Information Service, Springfield, Va., 1999).

Wegner, P. J.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

Whitman, P. A.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

Widmayer, C.

P. Wegner, S. Burkhart, J. Murray, B. Van Wonterghem, C. Widmayer, “Beamlet experiments,” ICF Quarterly9, 43–61, NTIS Document No. UCRL-LR-105821-99-1 (National Technical Information Service, Springfield, Va., 1999).

Wilde, B. H.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Wilson, D. C.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Zimmerman, G. B.

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[CrossRef]

Electron. Lett. (1)

K. Noguchi, H. Miyazawa, O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

IEEE J. Mod. Opt. (1)

D. Eimerl, J. M. Auerbach, P. W. Milloni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields,” IEEE J. Mod. Opt. 42, 1037–1067 (1995);P. W. Milloni, J. M. Auerbach, D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 230–241 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. S. Craxton, “High efficiency frequency tripling schemes for high-power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981);D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
[CrossRef]

J. Appl. Phys. (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Opt. Commun. (1)

D. J. Kuizenga, “Generation of short pulses for laser fusion in an actively mode-locked Nd:YAG laser,” Opt. Commun. 22, 156–160 (1977).
[CrossRef]

Phys. Plasmas (4)

S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480–2487 (1995).
[CrossRef]

J. D. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

S. E. Bodner, D. G. Colombant, J. H. Gardmer, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

L. Suter, J. Rothenberg, D. Munro, B. Van Wonterghem, S. Haan, “Exploring the limits of the National Ignition Facility’s capsule coupling,” Phys. Plasmas 7, 2092–2098 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

J. D. Lindl, W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273–1276 (1975).
[CrossRef]

Prog. Quantum Electron. (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

Other (5)

J. R. Murray, “Overview of the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE Suppl. 3492, 1–10 (1998).

P. Wegner, S. Burkhart, J. Murray, B. Van Wonterghem, C. Widmayer, “Beamlet experiments,” ICF Quarterly9, 43–61, NTIS Document No. UCRL-LR-105821-99-1 (National Technical Information Service, Springfield, Va., 1999).

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. A. Whitman, L. A. Hackel, “Frequency converter development for the National Ignition Facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 392–405 (1999).
[CrossRef]

O. S. Jones, D. R. Speck, S. W. Haan, “The NIF power balance,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIESuppl.3492, 78–104 (1998).

See for example, D. H. Auston, “Picosecond nonlinear optics,” in Topics in Applied Physics, S. L. Shapiro, ed. (Springer-Verlag, New York, 1977), Vol. 18, pp. 125–133, and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

NIF baseline conversion of the Haan pulse shape (3ω power, solid curve; 1ω power, dashed curve) shows that very low (20%) conversion efficiency in the foot pulse (left of dotted line) reduces the net conversion of the entire pulse to ∼50% from the 71% that is achieved in the high-power main pulse. The efficiencies shown include an assumed 3ω transport loss to the target of 10%.

Fig. 2
Fig. 2

Short, intense pickets have peak 3ω intensity enhanced by a factor of Tt (the inverse duty cycle) over the average intensity. The pickets can thus frequency convert efficiently while providing low power to the target when averaged over the period T.

Fig. 3
Fig. 3

Temporal phasing within a quad by a delay T/4 (equal to the SSD delay of ∼60 ps) between beamlets allows a long delay between pickets of T ∼250 ps while one maintains continuous illumination on target (at the common focus of the four beamlets).

Fig. 4
Fig. 4

Comparison of continuous and terraced Haan pulse shapes incident on target with a total temporal phasing delay within a quad of T = 250 and 500 ps. The shape with a 500-ps delay was shifted up by 100 TW for clarity.

Fig. 5
Fig. 5

Schematic of how ultrafast pickets might be implemented on the NIF laser. A single ultrafast picket generator is used as a source of pickets for all the NIF laser beam lines by 48 PAM’s. A conventional pulse-shaping modulator before each PAM with a response time of ∼0.4 ns is used to tune precisely the envelope of the required pulse shape for each quad. With appropriate relative delays between beamlets, each quad (group of four beamlets) is driven by a single PAM.

Fig. 6
Fig. 6

1ω intensity limit imposed by the condition ΔB < 1.8 rad in the NIF 11/7 amplifier configuration. Dashed curve indicates the limit imposed by the threat of filamentation in the 3ω optics section.

Fig. 7
Fig. 7

3ω conversion efficiency versus peak 1ω intensity I for short picket pulses of the durations indicated (solid curves) and a continuous beam (dashed curve). The picket shape is assumed to be a simple Gaussian for the 5–10-ps pulses. The 20-, 50-, and 100-ps pulses have super-Gaussian shapes of the fourth, eighth, and eighth-order, respectively. The effect of self-phase modulation in the 1ω amplifier is included, this nonlinear phase accumulation of ΣB = 0.64I is assumed, where I is given in gigawatts per square centimeter.

Fig. 8
Fig. 8

Multiplication factor for the transfer of 1ω fluctuations to 3ω. β ≡ (ΔI /I )/(ΔI /I ) is plotted as a function of peak 1ω intensity I for a Gaussian picket pulse with durations as indicated and for a continuous beam (solid curve). The diamonds correspond to the range of peak picket intensities that can be achieved at the 10-TW power level of the Haan pulse foot, assuming a picket delay of 250 and 500 ps.

Fig. 9
Fig. 9

Conversion of the Suter et al. 850-kJ pulse shape (2.7 MJ of 3ω) by use of ultrafast pickets with a delay of 250 ps. The lower and upper solid curves are the 3ω power on target and total 1ω power at the conversion crystals, respectively. The dotted curves are the instantaneous conversion efficiencies (100% full scale) at the tripler exit with (upper) and without (lower) ultrafast pickets.

Tables (2)

Tables Icon

Table 1 Characteristics of Evaluated NIF Drive Pulses

Tables Icon

Table 2 Net Conversion Efficiencies of 1ω to 3ω on Target and the Required 1ω Energy for the Drive Pulses of Table 1 a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

βΔI3ω/I3ω/ΔI1ω/I1ω.
I3ω  I1ωn,

Metrics