Abstract

Dual-broadband pure rotational coherent anti-Stokes Raman scattering is a valuable nonintrusive tool for gas diagnosis that provides simultaneous and time-resolved information about temperature and relative species concentration. A systematic investigation of single-shot precision and accuracy of simultaneous measurement of temperature and O2/N2 concentration is presented. Various O2 concentrations (1.0–15.6%) in binary mixtures with N2 have been investigated in a temperature range from 300 to 773 K and for pressures of 1–50 bars (0.1–5 MPa). A comparison of two least-sum-squared differences fit evaluation procedures for the spectral shape, weighted constantly or inversely with respect to the relative signal intensity, is given. The results yielded good accuracy and precision for measuring temperature as well as concentration. The influence of temperature, O2 concentration, pressure, and evaluation techniques on both accuracy and precision is discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Regnier, J.-P. E. Taran, “On the possibilities of measuring gas concentration by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
    [CrossRef]
  2. A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump–Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
    [CrossRef] [PubMed]
  3. M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
    [CrossRef] [PubMed]
  4. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2 ed. (Gordon & Breach, Amsterdam, 1996), Vol. 3.
  5. R. P. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett. 12, 78–80 (1987).
    [CrossRef] [PubMed]
  6. R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes–Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
    [CrossRef] [PubMed]
  7. M. Pealat, P. Magre, P. Bouchardy, G. Collin, “Simultaneous temperature and sensitive two-species concentration measurements by single-shot CARS,” Appl. Opt. 30, 1263–1273 (1991).
    [CrossRef] [PubMed]
  8. A. C. Eckbreth, T. J. Anderson, “Dual broadband CARS for simultaneous, multiple species measurements,” Appl. Opt. 24, 2731–2736 (1985).
    [CrossRef] [PubMed]
  9. J. B. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
    [CrossRef] [PubMed]
  10. T. Lasser, E. Magens, A. Leipertz, “Gas thermometry by Fourier analysis of rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 10, 535–537 (1985).
    [CrossRef] [PubMed]
  11. E. Magens, “Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1993), Vol. 93.2, pp. 129–150.
  12. L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes–Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
    [CrossRef]
  13. T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes–Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
    [CrossRef] [PubMed]
  14. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes–Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
    [CrossRef] [PubMed]
  15. M. Schenk, T. Seeger, A. Leipertz, “CO2-thermometry and simultaneous temperature and relative CO2/N2-concentration measurements using single-shot dual broadband pure rotational CARS,” in Proceedings of the XVIth International Conference on Raman Spectroscopy, A. M. Heyns, ed. (Wiley, Chichester, England, 1998), pp. 160–161.
  16. L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, “Applications for rotational CARS for temperature measurements at high pressure and in particle-laden flames,” in Temperature: Its Measurements in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 679–684.
  17. A. Thumann, “Temperaturbestimmung mittels der Kohärenten-Anti-Stokes-Raman-Streuung (CARS) unter Berücksichtigung des Druckeinflusses und nichteinheitlicher Temperaturverhältnisse im Messvolumen,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1997), Vol. 97.4, pp. 100–103.
  18. J. Bood, P.-E. Bengtsson, M. Alden, M. Ridder, T. Dreier, “Investigation of nitrogen pure rotational coherent anti-Stokes Raman spectra at pressures up to 2000 bar,” presented at the XVIth European CARS Workshop, Heidelberg, Germany, 23–25 March 1997.
  19. P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.
  20. M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for single-shot simultaneous temperature and relative N2–O2 concentration determination,” Appl. Opt. 37, 5659–5671 (1998).
    [CrossRef]
  21. M. Schenk, “Simultane Temperatur- und Konzentrationsmessung in binären und ternären Gemischen mittels Rotations-CARS-Spektroskopie,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 2000), Vol. 2000.2, pp. 98–118.
  22. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), Vol. 15, pp. 193–251.
  23. J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
    [CrossRef]
  24. G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
    [CrossRef]
  25. M. Woyde, “Temperaturbestimmung hoher Genauigkeit mit CARS in Hochdruckverbrennungssystemen,” Ph.D. dissertation (Universität Stuttgart, Stuttgart, Germany, 1992).
  26. L. Martinsson, “Theoretical development of rotational CARS for combustion diagnostics,” Ph.D. dissertation, (Lund Institute of Technology, Lund, Sweden, 1994).
  27. V. Alekseyev, A. Grasiuk, V. Ragulsky, I. Sobelman, F. Faizulov, “S-6-stimulated Raman scattering in gases and gain pressure dependence,” IEEE J. Quantum Electron. QE-4, 654–656 (1968).
    [CrossRef]
  28. V. Alekseyev, I. Sobelman, “Influence of collisions on stimulated random scattering in gases,” Sov. Phys. JETP 28, 991–994 (1969).
  29. R. C. H. Tam, A. D. May, “The collision induced contribution to the depolarized Raman spectrum of compressed HCl, CO, N2 and CO2,” Can. J. Phys. 61, 1571–1578 (1983).
    [CrossRef]
  30. M. C. Drake, “Rotational Raman intensity-correction factors due to vibrational anharmonicity: their effect on temperature measurements,” Opt. Lett. 7, 440–441 (1982).
    [CrossRef] [PubMed]
  31. T. Lasser, “An alternative method for CARS-spectra calculation,” Opt. Commun. 35, 447–450 (1980).
    [CrossRef]
  32. M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
    [CrossRef] [PubMed]

1998 (1)

1997 (2)

1996 (2)

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes–Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes–Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

1992 (1)

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

1991 (2)

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

M. Pealat, P. Magre, P. Bouchardy, G. Collin, “Simultaneous temperature and sensitive two-species concentration measurements by single-shot CARS,” Appl. Opt. 30, 1263–1273 (1991).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

1986 (2)

1985 (2)

1984 (1)

1983 (1)

R. C. H. Tam, A. D. May, “The collision induced contribution to the depolarized Raman spectrum of compressed HCl, CO, N2 and CO2,” Can. J. Phys. 61, 1571–1578 (1983).
[CrossRef]

1982 (1)

1980 (1)

T. Lasser, “An alternative method for CARS-spectra calculation,” Opt. Commun. 35, 447–450 (1980).
[CrossRef]

1973 (1)

P. R. Regnier, J.-P. E. Taran, “On the possibilities of measuring gas concentration by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

1969 (1)

V. Alekseyev, I. Sobelman, “Influence of collisions on stimulated random scattering in gases,” Sov. Phys. JETP 28, 991–994 (1969).

1968 (1)

V. Alekseyev, A. Grasiuk, V. Ragulsky, I. Sobelman, F. Faizulov, “S-6-stimulated Raman scattering in gases and gain pressure dependence,” IEEE J. Quantum Electron. QE-4, 654–656 (1968).
[CrossRef]

Alden, M.

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes–Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

J. Bood, P.-E. Bengtsson, M. Alden, M. Ridder, T. Dreier, “Investigation of nitrogen pure rotational coherent anti-Stokes Raman spectra at pressures up to 2000 bar,” presented at the XVIth European CARS Workshop, Heidelberg, Germany, 23–25 March 1997.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, “Applications for rotational CARS for temperature measurements at high pressure and in particle-laden flames,” in Temperature: Its Measurements in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 679–684.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.

Alekseyev, V.

V. Alekseyev, I. Sobelman, “Influence of collisions on stimulated random scattering in gases,” Sov. Phys. JETP 28, 991–994 (1969).

V. Alekseyev, A. Grasiuk, V. Ragulsky, I. Sobelman, F. Faizulov, “S-6-stimulated Raman scattering in gases and gain pressure dependence,” IEEE J. Quantum Electron. QE-4, 654–656 (1968).
[CrossRef]

Anderson, T. J.

Bengtsson, P.-E.

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes–Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

J. Bood, P.-E. Bengtsson, M. Alden, M. Ridder, T. Dreier, “Investigation of nitrogen pure rotational coherent anti-Stokes Raman spectra at pressures up to 2000 bar,” presented at the XVIth European CARS Workshop, Heidelberg, Germany, 23–25 March 1997.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, “Applications for rotational CARS for temperature measurements at high pressure and in particle-laden flames,” in Temperature: Its Measurements in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 679–684.

Berger, H.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Bonamy, J.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Bonamy, L.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Bood, J.

J. Bood, P.-E. Bengtsson, M. Alden, M. Ridder, T. Dreier, “Investigation of nitrogen pure rotational coherent anti-Stokes Raman spectra at pressures up to 2000 bar,” presented at the XVIth European CARS Workshop, Heidelberg, Germany, 23–25 March 1997.

Bouchardy, P.

Chang, R. K.

Chaux, R.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Collin, G.

Drake, M. C.

Dreier, T.

J. Bood, P.-E. Bengtsson, M. Alden, M. Ridder, T. Dreier, “Investigation of nitrogen pure rotational coherent anti-Stokes Raman spectra at pressures up to 2000 bar,” presented at the XVIth European CARS Workshop, Heidelberg, Germany, 23–25 March 1997.

Eckbreth, A. C.

Edner, H.

Faizulov, F.

V. Alekseyev, A. Grasiuk, V. Ragulsky, I. Sobelman, F. Faizulov, “S-6-stimulated Raman scattering in gases and gain pressure dependence,” IEEE J. Quantum Electron. QE-4, 654–656 (1968).
[CrossRef]

Farrow, R. L.

Gonze, M. L.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Grasiuk, A.

V. Alekseyev, A. Grasiuk, V. Ragulsky, I. Sobelman, F. Faizulov, “S-6-stimulated Raman scattering in gases and gain pressure dependence,” IEEE J. Quantum Electron. QE-4, 654–656 (1968).
[CrossRef]

Greenhalgh, D. A.

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), Vol. 15, pp. 193–251.

Hancock, R. D.

Johansson, B.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.

Jonuscheit, J.

Kröll, S.

M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, “Applications for rotational CARS for temperature measurements at high pressure and in particle-laden flames,” in Temperature: Its Measurements in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 679–684.

Lasser, T.

Lassesson, B.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.

Lavorel, B.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Leipertz, A.

M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for single-shot simultaneous temperature and relative N2–O2 concentration determination,” Appl. Opt. 37, 5659–5671 (1998).
[CrossRef]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes–Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
[CrossRef] [PubMed]

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes–Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

T. Lasser, E. Magens, A. Leipertz, “Gas thermometry by Fourier analysis of rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 10, 535–537 (1985).
[CrossRef] [PubMed]

J. B. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
[CrossRef] [PubMed]

M. Schenk, T. Seeger, A. Leipertz, “CO2-thermometry and simultaneous temperature and relative CO2/N2-concentration measurements using single-shot dual broadband pure rotational CARS,” in Proceedings of the XVIth International Conference on Raman Spectroscopy, A. M. Heyns, ed. (Wiley, Chichester, England, 1998), pp. 160–161.

Lucht, R. P.

Lundholm, G.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.

Magens, E.

T. Lasser, E. Magens, A. Leipertz, “Gas thermometry by Fourier analysis of rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 10, 535–537 (1985).
[CrossRef] [PubMed]

E. Magens, “Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1993), Vol. 93.2, pp. 129–150.

Magre, P.

Marfori, K.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.

Martinsson, L.

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes–Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, “Applications for rotational CARS for temperature measurements at high pressure and in particle-laden flames,” in Temperature: Its Measurements in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 679–684.

L. Martinsson, “Theoretical development of rotational CARS for combustion diagnostics,” Ph.D. dissertation, (Lund Institute of Technology, Lund, Sweden, 1994).

May, A. D.

R. C. H. Tam, A. D. May, “The collision induced contribution to the depolarized Raman spectrum of compressed HCl, CO, N2 and CO2,” Can. J. Phys. 61, 1571–1578 (1983).
[CrossRef]

Millot, G.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Murphy, D. V.

Nilsson, D.

Pealat, M.

Ragulsky, V.

V. Alekseyev, A. Grasiuk, V. Ragulsky, I. Sobelman, F. Faizulov, “S-6-stimulated Raman scattering in gases and gain pressure dependence,” IEEE J. Quantum Electron. QE-4, 654–656 (1968).
[CrossRef]

Regnier, P. R.

P. R. Regnier, J.-P. E. Taran, “On the possibilities of measuring gas concentration by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Ridder, M.

J. Bood, P.-E. Bengtsson, M. Alden, M. Ridder, T. Dreier, “Investigation of nitrogen pure rotational coherent anti-Stokes Raman spectra at pressures up to 2000 bar,” presented at the XVIth European CARS Workshop, Heidelberg, Germany, 23–25 March 1997.

Robert, D.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Saint-Loup, R.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Santos, J.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Schauer, F. R.

Schenk, M.

M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for single-shot simultaneous temperature and relative N2–O2 concentration determination,” Appl. Opt. 37, 5659–5671 (1998).
[CrossRef]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes–Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
[CrossRef] [PubMed]

M. Schenk, “Simultane Temperatur- und Konzentrationsmessung in binären und ternären Gemischen mittels Rotations-CARS-Spektroskopie,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 2000), Vol. 2000.2, pp. 98–118.

M. Schenk, T. Seeger, A. Leipertz, “CO2-thermometry and simultaneous temperature and relative CO2/N2-concentration measurements using single-shot dual broadband pure rotational CARS,” in Proceedings of the XVIth International Conference on Raman Spectroscopy, A. M. Heyns, ed. (Wiley, Chichester, England, 1998), pp. 160–161.

Seeger, T.

Snow, J. B.

Sobelman, I.

V. Alekseyev, I. Sobelman, “Influence of collisions on stimulated random scattering in gases,” Sov. Phys. JETP 28, 991–994 (1969).

V. Alekseyev, A. Grasiuk, V. Ragulsky, I. Sobelman, F. Faizulov, “S-6-stimulated Raman scattering in gases and gain pressure dependence,” IEEE J. Quantum Electron. QE-4, 654–656 (1968).
[CrossRef]

Tam, R. C. H.

R. C. H. Tam, A. D. May, “The collision induced contribution to the depolarized Raman spectrum of compressed HCl, CO, N2 and CO2,” Can. J. Phys. 61, 1571–1578 (1983).
[CrossRef]

Taran, J.-P. E.

P. R. Regnier, J.-P. E. Taran, “On the possibilities of measuring gas concentration by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Thumann, A.

Woyde, M.

M. Woyde, “Temperaturbestimmung hoher Genauigkeit mit CARS in Hochdruckverbrennungssystemen,” Ph.D. dissertation (Universität Stuttgart, Stuttgart, Germany, 1992).

Zheng, J. B.

Appl. Opt. (8)

A. C. Eckbreth, T. J. Anderson, “Dual broadband CARS for simultaneous, multiple species measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes–Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
[CrossRef] [PubMed]

M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for single-shot simultaneous temperature and relative N2–O2 concentration determination,” Appl. Opt. 37, 5659–5671 (1998).
[CrossRef]

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes–Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes–Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
[CrossRef] [PubMed]

M. Pealat, P. Magre, P. Bouchardy, G. Collin, “Simultaneous temperature and sensitive two-species concentration measurements by single-shot CARS,” Appl. Opt. 30, 1263–1273 (1991).
[CrossRef] [PubMed]

M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Appl. Phys. B (1)

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes–Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

P. R. Regnier, J.-P. E. Taran, “On the possibilities of measuring gas concentration by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Can. J. Phys. (1)

R. C. H. Tam, A. D. May, “The collision induced contribution to the depolarized Raman spectrum of compressed HCl, CO, N2 and CO2,” Can. J. Phys. 61, 1571–1578 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Alekseyev, A. Grasiuk, V. Ragulsky, I. Sobelman, F. Faizulov, “S-6-stimulated Raman scattering in gases and gain pressure dependence,” IEEE J. Quantum Electron. QE-4, 654–656 (1968).
[CrossRef]

J. Chem. Phys. (2)

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Opt. Commun. (1)

T. Lasser, “An alternative method for CARS-spectra calculation,” Opt. Commun. 35, 447–450 (1980).
[CrossRef]

Opt. Lett. (5)

Sov. Phys. JETP (1)

V. Alekseyev, I. Sobelman, “Influence of collisions on stimulated random scattering in gases,” Sov. Phys. JETP 28, 991–994 (1969).

Other (11)

E. Magens, “Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1993), Vol. 93.2, pp. 129–150.

M. Woyde, “Temperaturbestimmung hoher Genauigkeit mit CARS in Hochdruckverbrennungssystemen,” Ph.D. dissertation (Universität Stuttgart, Stuttgart, Germany, 1992).

L. Martinsson, “Theoretical development of rotational CARS for combustion diagnostics,” Ph.D. dissertation, (Lund Institute of Technology, Lund, Sweden, 1994).

M. Schenk, T. Seeger, A. Leipertz, “CO2-thermometry and simultaneous temperature and relative CO2/N2-concentration measurements using single-shot dual broadband pure rotational CARS,” in Proceedings of the XVIth International Conference on Raman Spectroscopy, A. M. Heyns, ed. (Wiley, Chichester, England, 1998), pp. 160–161.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, “Applications for rotational CARS for temperature measurements at high pressure and in particle-laden flames,” in Temperature: Its Measurements in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 679–684.

A. Thumann, “Temperaturbestimmung mittels der Kohärenten-Anti-Stokes-Raman-Streuung (CARS) unter Berücksichtigung des Druckeinflusses und nichteinheitlicher Temperaturverhältnisse im Messvolumen,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1997), Vol. 97.4, pp. 100–103.

J. Bood, P.-E. Bengtsson, M. Alden, M. Ridder, T. Dreier, “Investigation of nitrogen pure rotational coherent anti-Stokes Raman spectra at pressures up to 2000 bar,” presented at the XVIth European CARS Workshop, Heidelberg, Germany, 23–25 March 1997.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1994) pp. 1735–1742.

M. Schenk, “Simultane Temperatur- und Konzentrationsmessung in binären und ternären Gemischen mittels Rotations-CARS-Spektroskopie,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, A. Leipertz, ed. (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 2000), Vol. 2000.2, pp. 98–118.

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), Vol. 15, pp. 193–251.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2 ed. (Gordon & Breach, Amsterdam, 1996), Vol. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Comparison of 200 accumulated experimental single-shot spectra of a mixture of 15.6% oxygen with nitrogen at pressures p with the best-fitting theoretical spectra. The differences between experimental and theoretical spectra are displayed as well.

Fig. 2
Fig. 2

Comparison of the pressure dependencies of the temperature mean values obtained for 500 single-shot evaluations of each value. The values displayed represent the results for (a) 15.6%; (b) 8.0%; (c) 2.5%; and (d) 1.0% mixtures of oxygen with nitrogen, respectively. The single-shot standard deviations are (±σ) by the error bars.

Fig. 3
Fig. 3

Comparison of the pressure dependencies of the temperature standard deviation obtained for 500 single-shot evaluations of each deviation. The values displayed represent the results for a 15.6% mixture of oxygen with nitrogen at various temperatures. The evaluation procedures used were (a) the constantly weighted and (b) the inversely weighted least-squares fit.

Fig. 4
Fig. 4

Comparison of the pressure dependencies of the temperature standard deviation calculated from 500 single-shot evaluations of each deviation. Four percentages of oxygen with nitrogen at a reference temperature T are illustrated. The evaluation procedures used were (a) the constantly weighted and (b) the inversely weighted least-squares fit.

Fig. 5
Fig. 5

Comparison of the pressure dependencies of the oxygen concentration mean values found by 500 single-shot evaluations, each of which used the inversely weighted least-squares fit. The values displayed represent the results at (a) 773, (b) 573, and (c) 300 K. The single-shot standard deviations are (±σ) shown by the error bars.

Fig. 6
Fig. 6

Comparison of the pressure dependencies of the oxygen concentration standard deviation calculated from 500 single-shot evaluations for each deviation. The values displayed represent the results of an 8.0% mixture of oxygen with nitrogen at various temperatures. The evaluation procedure used was (a) the constantly weighted and (b) the inversely weighted least-squares fit.

Fig. 7
Fig. 7

Comparison of the pressure dependency of the spectral shape for pure nitrogen and pure oxygen at a temperature of 300 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k gk|iek-itkT, c|2=minT, ci.
gk=1c0+c1iek+c2iek2.

Metrics