Abstract

The availability of new laser sources that are tunable in the IR spectral region opens new perspectives for differential absorption lidar (DIAL) measurements. A region of particular interest is located in the near IR, where some of the atmospheric pollutants have absorption lines that permit monitoring of emissions from industrial plants and in urban areas. In DIAL measurements, the absorption lines for the species to be measured must be carefully chosen to prevent interference from other molecules, to minimize the dependence of the absorption cross section on temperature, and to optimize the measurements with respect to the optical depth. We analyze the influence of these factors and discuss a set of criteria for selecting the best pairs of wavelengths (λon and λoff) to be used in DIAL measurements of several molecular species (HCl, CO, CO2, NO2, CH4, H2O, and O2). Moreover, a sensitivity study has been carried out for selected lines in three different regimes: clean air, urban polluted air, and emission from an incinerator stack.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Houghton, F. W. Taylor, C. D. Rodgers, eds., Remote Sounding of the Atmospheres (Cambridge U. Press, Cambridge, 1984).
  2. A. Cracknell, L. Hayes, Introduction to Remote Sensing (Taylor & Francis, London, 1993).
  3. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).
  4. M. Uchiumi, O. C. Chee, K. Muraoka, M. Maeda, O. Uchino, “Dial measurement of CH4, CO2, CO and N2O using a tunable IR source based on the Ti:sapphire laser,” presented at the International Laser Radar Conference, Sendai, Japan, 25–29 July 1994.
  5. J. Bösenberg, D. Brassington, P. C. Simon, eds., Instrument Development for Atmospheric Research and Monitoring (Springer-Verlag, Berlin, 1997).
    [CrossRef]
  6. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
    [CrossRef] [PubMed]
  7. E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
    [CrossRef] [PubMed]
  8. I. Heaton, “Temperature scaling of absorption coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976).
    [CrossRef]
  9. E. Remsberg, L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
    [CrossRef] [PubMed]
  10. G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
    [CrossRef] [PubMed]
  11. N. Sugimoto, N. Sims, K. P. Chan, D. K. Killinger, “Eye-safe 2.1-µm Ho lidar for measuring atmospheric density profiles,” Opt. Lett. 15, 302–304 (1990).
    [CrossRef]
  12. S. Cha, K. P. Chan, D. K. Killinger, “Tunable 2.1-mm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991).
    [CrossRef] [PubMed]
  13. M. Vaidyanathan, D. K. Killinger, “Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements,” Appl. Opt. 33, 7747–7753 (1994).
    [CrossRef] [PubMed]
  14. N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
    [CrossRef] [PubMed]
  15. N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl, and CH4 using a continuously tunable Co:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
    [CrossRef] [PubMed]
  16. E. M. Patterson, D. W. Roberts, G. G. Gimmestad, “Initial measurements using a 1.54-µm, eye safe Raman shifted lidar,” Appl. Opt. 28, 4978–4981 (1989).
    [CrossRef] [PubMed]
  17. T. Kobayashi, Y. Enomoto, D. Hua, C. Galvez, T. Taira, “A compact, eye-safe lidar based on optical parametric oscillators for remote aerosl sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 11–14.
    [CrossRef]
  18. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
    [CrossRef]
  19. A. Fix, G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 313–316.
    [CrossRef]
  20. T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 451–454.
    [CrossRef]
  21. G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
    [CrossRef]
  22. R. T. H. Collis, P. B. Russel, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151.
    [CrossRef]
  23. V. E. Zuev, “Laser light transmission through the atmosphere,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 29–69.
    [CrossRef]
  24. O. Svelto, Principles of Lasers (Plenum, New York, 1989).
  25. G. Megie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980).
    [CrossRef] [PubMed]
  26. V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
    [CrossRef]
  27. G. J. Megie, G. Ancellet, J. Pelon, “Lidar measurements of ozone vertical profiles,” Appl. Opt. 24, 3454–3463 (1985).
    [CrossRef] [PubMed]
  28. R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  29. W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York, 1995), pp. 213–305.
  30. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
    [CrossRef]
  31. J. Bösenberg, “Measurements of the pressure shift of water vapor absorption lines by simultaneous photoacoustic spectroscopy,” Appl. Opt. 24, 3531–3534 (1985).
    [CrossRef] [PubMed]
  32. B. E. Grossmann, E. V. Browell, “Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
    [CrossRef]
  33. B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
    [CrossRef]
  34. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  35. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  36. A. C. Stern, ed., Air Pollution, 3rd, Vol. I of Air Pollutants, Their Transformation and Transport (Academic, New York, 1976).
  37. G. Franzinetti, FISIA S.p.A., Via Acqui 86, I-10090 Cascine Vica Rivoli, Italy (personal communication, 1998).
  38. G. H. Strom, “Transport and diffusion of stack effluents,” in Air Pollution, 3rd ed., A. C. Stern, ed., Vol. I of Air Pollutants, Their Transformation and Transport (Academic, New York, 1976), pp. 401–501.

1998 (4)

1994 (2)

1991 (2)

1990 (1)

1989 (4)

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
[CrossRef] [PubMed]

E. M. Patterson, D. W. Roberts, G. G. Gimmestad, “Initial measurements using a 1.54-µm, eye safe Raman shifted lidar,” Appl. Opt. 28, 4978–4981 (1989).
[CrossRef] [PubMed]

B. E. Grossmann, E. V. Browell, “Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

1987 (1)

1985 (2)

1980 (2)

1978 (1)

1976 (1)

I. Heaton, “Temperature scaling of absorption coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976).
[CrossRef]

1974 (1)

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Allen, R. J.

Ambrico, P.

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

Amodeo, A.

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

Ancellet, G.

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Berardi, V.

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

Boselli, A.

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

Bösenberg, J.

Browell, E. V.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Butler, C. F.

Capobianco, R.

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

Carter, A. F.

Cha, S.

Chan, K. P.

Chance, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chee, O. C.

M. Uchiumi, O. C. Chee, K. Muraoka, M. Maeda, O. Uchino, “Dial measurement of CH4, CO2, CO and N2O using a tunable IR source based on the Ti:sapphire laser,” presented at the International Laser Radar Conference, Sendai, Japan, 25–29 July 1994.

Chetwind, J. H.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Chyba, T. H.

Clough, S. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Collis, R. T. H.

R. T. H. Collis, P. B. Russel, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151.
[CrossRef]

Cracknell, A.

A. Cracknell, L. Hayes, Introduction to Remote Sensing (Taylor & Francis, London, 1993).

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Di Girolamo, P.

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ehret, G.

A. Fix, G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 313–316.
[CrossRef]

Enomoto, Y.

T. Kobayashi, Y. Enomoto, D. Hua, C. Galvez, T. Taira, “A compact, eye-safe lidar based on optical parametric oscillators for remote aerosl sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 11–14.
[CrossRef]

Fix, A.

A. Fix, G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 313–316.
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Franzinetti, G.

G. Franzinetti, FISIA S.p.A., Via Acqui 86, I-10090 Cascine Vica Rivoli, Italy (personal communication, 1998).

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Galvez, C.

T. Kobayashi, Y. Enomoto, D. Hua, C. Galvez, T. Taira, “A compact, eye-safe lidar based on optical parametric oscillators for remote aerosl sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 11–14.
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gardiner, T. D.

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 451–454.
[CrossRef]

Gimmestad, G. G.

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gordley, L.

Grant, W. B.

Grossmann, B. E.

N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
[CrossRef] [PubMed]

E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
[CrossRef] [PubMed]

B. E. Grossmann, E. V. Browell, “Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

Hayes, L.

A. Cracknell, L. Hayes, Introduction to Remote Sensing (Taylor & Francis, London, 1993).

Heaton, I.

I. Heaton, “Temperature scaling of absorption coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976).
[CrossRef]

Heuser, A. W.

Higdon, N. S.

Hua, D.

T. Kobayashi, Y. Enomoto, D. Hua, C. Galvez, T. Taira, “A compact, eye-safe lidar based on optical parametric oscillators for remote aerosl sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 11–14.
[CrossRef]

Ismail, S.

Jucks, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Killinger, D. K.

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Kobayashi, T.

T. Kobayashi, Y. Enomoto, D. Hua, C. Galvez, T. Taira, “A compact, eye-safe lidar based on optical parametric oscillators for remote aerosl sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 11–14.
[CrossRef]

Maeda, M.

M. Uchiumi, O. C. Chee, K. Muraoka, M. Maeda, O. Uchino, “Dial measurement of CH4, CO2, CO and N2O using a tunable IR source based on the Ti:sapphire laser,” presented at the International Laser Radar Conference, Sendai, Japan, 25–29 July 1994.

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mayo, M. N.

Mayor, S. D.

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).

Megie, G.

Megie, G. J.

Menyuk, N.

Menzies, R. T.

Milton, M. J. T.

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 451–454.
[CrossRef]

Molero, F.

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 451–454.
[CrossRef]

Muraoka, K.

M. Uchiumi, O. C. Chee, K. Muraoka, M. Maeda, O. Uchino, “Dial measurement of CH4, CO2, CO and N2O using a tunable IR source based on the Ti:sapphire laser,” presented at the International Laser Radar Conference, Sendai, Japan, 25–29 July 1994.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Pappalardo, G.

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

Patterson, E. M.

Pelon, J.

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ponsardin, P.

Remsberg, E.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Roberts, D. W.

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Russel, P. B.

R. T. H. Collis, P. B. Russel, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151.
[CrossRef]

Schotland, R. M.

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Sims, N.

Spinelli, N.

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

Strom, G. H.

G. H. Strom, “Transport and diffusion of stack effluents,” in Air Pollution, 3rd ed., A. C. Stern, ed., Vol. I of Air Pollutants, Their Transformation and Transport (Academic, New York, 1976), pp. 401–501.

Sugimoto, N.

Svelto, O.

O. Svelto, Principles of Lasers (Plenum, New York, 1989).

Taira, T.

T. Kobayashi, Y. Enomoto, D. Hua, C. Galvez, T. Taira, “A compact, eye-safe lidar based on optical parametric oscillators for remote aerosl sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 11–14.
[CrossRef]

Uchino, O.

M. Uchiumi, O. C. Chee, K. Muraoka, M. Maeda, O. Uchino, “Dial measurement of CH4, CO2, CO and N2O using a tunable IR source based on the Ti:sapphire laser,” presented at the International Laser Radar Conference, Sendai, Japan, 25–29 July 1994.

Uchiumi, M.

M. Uchiumi, O. C. Chee, K. Muraoka, M. Maeda, O. Uchino, “Dial measurement of CH4, CO2, CO and N2O using a tunable IR source based on the Ti:sapphire laser,” presented at the International Laser Radar Conference, Sendai, Japan, 25–29 July 1994.

Vaidyanathan, M.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Velotta, R.

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Woods, P. T.

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 451–454.
[CrossRef]

Wulfmeyer, V.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Zuev, V. E.

V. E. Zuev, “Laser light transmission through the atmosphere,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 29–69.
[CrossRef]

Appl. Opt. (15)

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
[CrossRef] [PubMed]

E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
[CrossRef] [PubMed]

E. Remsberg, L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
[CrossRef] [PubMed]

G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

S. Cha, K. P. Chan, D. K. Killinger, “Tunable 2.1-mm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991).
[CrossRef] [PubMed]

M. Vaidyanathan, D. K. Killinger, “Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements,” Appl. Opt. 33, 7747–7753 (1994).
[CrossRef] [PubMed]

N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl, and CH4 using a continuously tunable Co:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
[CrossRef] [PubMed]

E. M. Patterson, D. W. Roberts, G. G. Gimmestad, “Initial measurements using a 1.54-µm, eye safe Raman shifted lidar,” Appl. Opt. 28, 4978–4981 (1989).
[CrossRef] [PubMed]

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

G. Megie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

G. J. Megie, G. Ancellet, J. Pelon, “Lidar measurements of ozone vertical profiles,” Appl. Opt. 24, 3454–3463 (1985).
[CrossRef] [PubMed]

J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

J. Bösenberg, “Measurements of the pressure shift of water vapor absorption lines by simultaneous photoacoustic spectroscopy,” Appl. Opt. 24, 3531–3534 (1985).
[CrossRef] [PubMed]

J. Appl. Meteorol. (1)

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

J. Mol. Spectrosc. (2)

B. E. Grossmann, E. V. Browell, “Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

I. Heaton, “Temperature scaling of absorption coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976).
[CrossRef]

Opt. Lett. (1)

Other (17)

J. T. Houghton, F. W. Taylor, C. D. Rodgers, eds., Remote Sounding of the Atmospheres (Cambridge U. Press, Cambridge, 1984).

A. Cracknell, L. Hayes, Introduction to Remote Sensing (Taylor & Francis, London, 1993).

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).

M. Uchiumi, O. C. Chee, K. Muraoka, M. Maeda, O. Uchino, “Dial measurement of CH4, CO2, CO and N2O using a tunable IR source based on the Ti:sapphire laser,” presented at the International Laser Radar Conference, Sendai, Japan, 25–29 July 1994.

J. Bösenberg, D. Brassington, P. C. Simon, eds., Instrument Development for Atmospheric Research and Monitoring (Springer-Verlag, Berlin, 1997).
[CrossRef]

A. Fix, G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 313–316.
[CrossRef]

T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 451–454.
[CrossRef]

G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997).
[CrossRef]

R. T. H. Collis, P. B. Russel, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151.
[CrossRef]

V. E. Zuev, “Laser light transmission through the atmosphere,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 29–69.
[CrossRef]

O. Svelto, Principles of Lasers (Plenum, New York, 1989).

T. Kobayashi, Y. Enomoto, D. Hua, C. Galvez, T. Taira, “A compact, eye-safe lidar based on optical parametric oscillators for remote aerosl sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 11–14.
[CrossRef]

A. C. Stern, ed., Air Pollution, 3rd, Vol. I of Air Pollutants, Their Transformation and Transport (Academic, New York, 1976).

G. Franzinetti, FISIA S.p.A., Via Acqui 86, I-10090 Cascine Vica Rivoli, Italy (personal communication, 1998).

G. H. Strom, “Transport and diffusion of stack effluents,” in Air Pollution, 3rd ed., A. C. Stern, ed., Vol. I of Air Pollutants, Their Transformation and Transport (Academic, New York, 1976), pp. 401–501.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York, 1995), pp. 213–305.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Percent variation of the error associated with the optical depth relative to the minimum error in the molecular concentration (a) for shot-noise-limited measurements and (b) for background or dark-current-limited measurements for several values of K τ.

Fig. 2
Fig. 2

Relative error in molecular number density measurements for K τ = 70 as a function of optical depth for five SNR values for (a) shot-noise-limited measurements and (b) background or dark-current-limited measurements.

Tables (13)

Tables Icon

Table 1 Effective Cross-Sectional Percentage Variability Caused by Pressure Shift of the Absorption Line Center Positiona

Tables Icon

Table 2 Effective Cross-Section Percentage Variability Caused by the Dependence of Absorption Line Half-Width on Pressurea

Tables Icon

Table 3 Molecular Concentrations for the Molecules Used in the Calculations

Tables Icon

Table 4 Line Selected for DIAL Measurements of CO2 in Clean Aira

Tables Icon

Table 5 Line Selected for DIAL Measurements of CH4 in Clean Aira

Tables Icon

Table 6 Line Selected for DIAL Measurements of O2 in Clean Aira

Tables Icon

Table 7 Line Selected for DIAL Measurements of H2O in Clean Aira

Tables Icon

Table 8 Line Selected for DIAL Measurements of CO2 in Polluted Urban Aira

Tables Icon

Table 9 Line Selected for DIAL Measurements of CH4 in Polluted Urban Aira

Tables Icon

Table 10 Line Selected for DIAL Measurements of NO2 in Polluted Urban Aira

Tables Icon

Table 11 Line Selected for DIAL Measurements of CO2 at the Incinerator Stacka

Tables Icon

Table 12 Line Selected for DIAL Measurements of HCl at the Incinerator Stacka

Tables Icon

Table 13 Line Selected for DIAL Measurements of NO2 in the Incinerator Stacka

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

PtR=P0cτL/2βRARR-2 exp-2 0R αrdr,
NR1, R2=12ΔσΔRlnPOFF,2PON,1PON,2POFF,1+lnβON,2βOFF,1βON,1βOFF,2+R1R2ξON-ξOFFdr,
NR1, R2=12ΔσR2-R1 lnPOFF,2PON,1POFF,1PON,2.
σeff= Gν, rσν, rdν Gν, rdν,
σ=SπγLν-ν02+γL2,
ST=S0T0T3/21-exp-hcν0/kT1-exp-hcν0/kT0×expEhck1T0-1T,
γL=γ0PP0T0Tn,
Δσeffσeff=1-0+ Gνσνexp-τRνdν0+ Gνexp-τRνdν×0+ Gνdν0+ Gνσνdν,
τRν=0R σνNrdr,
Δj=σjλONi σiλON+K NKiK σiKλON.
Δββ=α Δλλ,
|λOFF-λON|0.001α λON.
δNN=1Δτδββ,
δNN=12Δτ8π3δββ βΔR.
Θ=δNN=δΔσΔσ=ON-OFFσλON-σλOFF,
ON=ij σiλON+K NKiK σiKλON,
OFF=ij σiλOFF+K NKiK σiKλOFF,
τν=0R ΔσνNrdr.
δNN=Kττ m0SNRexp2τ1+exp2τ/Kτ+xP exp4τ1+exp4τ[1+exp4τ/Kτ21+xP+11/2,
δNN=Kττm0SNR×exp2τ1+exp2τ/Kτ2+11/2,
δNN=Kττm0SNRexp4τ1+exp(4τ/Kτ2+11/2.
δNN=1σdσdT ΔT.
N-NsN=δNN,
δNN=ON-OFFσ(λON)-σλOFF2+exp2τs+ΔσNΔR1+expμΔσNΔR+21/22m0ΔσNΔRSNR21/2.

Metrics