Abstract

The performance of selected, commercially available InGaAs/InP avalanche photodiodes operating in a photon-counting mode at an incident wavelength of 1.55 µm is described. A discussion on the optimum operating conditions and their relationship to the electric field distribution within the device is presented.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 µm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
    [Crossref] [PubMed]
  2. P. D. Townsend, “Quantum cryptography on multi-user optical fibre networks,” Nature (London) 385, 47–49 (1997).
    [Crossref]
  3. G. S. Buller, S. J. Fancey, J. S. Massa, A. C. Walker, S. Cova, A. Lacaita, “Time-resolved photoluminescence measurements of InGaAs/InP multiple-quantum-well structures at 1.3-µm wavelengths by use of germanium single-photon avalanche photodiodes,” Appl. Opt. 35, 916–921 (1996).
    [Crossref] [PubMed]
  4. A. Lacaita, F. Zappa, S. Cova, P. Lovati, “Single-photon detection beyond 1 µm: performance of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986–2996 (1996).
    [Crossref] [PubMed]
  5. D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).
  6. G. Ripamonti, S. Cova, “Optical time domain reflectometry with centimetre resolution at 10-15W sensitivity,” Electron. Lett. 22, 818–819 (1986).
    [Crossref]
  7. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
    [Crossref] [PubMed]
  8. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–189 (1997).
    [Crossref]
  9. R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, M. Schauer, “Quantum cryptography,” Contemp. Phys. 36(3), 149–163 (1995).
  10. H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
    [Crossref]
  11. M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
    [Crossref]
  12. G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug and play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
    [Crossref]
  13. B. F. Levine, C. G. Bethea, J. C. Campbell, “1.52 µm room temperature photon counting optical time domain reflectometer,” Electron. Lett. 21, 194–196 (1985).
    [Crossref]
  14. N. S. Rayit, L. J. Arnold, “A monomode optical time domain reflectometer using a photon counting technique,” GEC J. Res. 4, 223–227 (1986).
  15. W. C. Priehorsky, R. C. Smith, C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. 35, 441–452 (1996).
    [Crossref]
  16. S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
    [Crossref]
  17. J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
    [Crossref]
  18. N. G. Woodard, E. G. Hufstedler, G. P. Lafyatis, “Photon counting using a large area avalanche photodiode cooled to 100K,” Appl. Phys. Lett. 64, 1177–1179 (1994).
    [Crossref]
  19. J. Gower, Optical Communication Systems, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  20. Hamamatsu R5509–72 specification sheet (Hamamatsu, Corporation, Bridgewater, N.J., 1999).
  21. G. S. Buller, J. S. Massa, A. C. Walker, “All solid state microscope-based system for picosecond time-resolved photoluminescence measurements on II-VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
    [Crossref]
  22. S. Fancey, “Single-photon avalanche diodes for time-resolved photoluminescence measurements in the near infra-red,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 1996).
  23. P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, P. D. Townsend, “Photon counting with passively quenched germanium avalanche photodiodes,” Appl. Opt. 33, 6895–6901 (1994).
    [Crossref] [PubMed]
  24. G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
    [Crossref]
  25. R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Devices 13, 164–168 (1966).
    [Crossref]
  26. I. Umebu, A. N. M. M. Choudhury, P. N. Robson, “Ionisation coefficients measured in abrupt InP junctions,” Appl. Phys. Lett. 36, 302–303 (1980).
    [Crossref]
  27. S. R. Forrest, R. G. Smith, O. K. Kim, “Performance of InGaAs/InP avalanche photodiodes,” IEEE J. Quantum Electron. 18, 2040–2048 (1982).
    [Crossref]
  28. K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, H. Ishihara, “Planar structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 micron wavelength optical communication use,” J. Lightwave Technol. 6, 1643–1655 (1988).
    [Crossref]
  29. Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating point guard ring and double diffused junction,” J. Lightwave Technol. 10, 182–193 (1992).
    [Crossref]
  30. S. R. Forrest, O. K. Kim, R. G. Smith, “Optical response time of In(0.53)Ga(0.47)As/InP avalanche photodiodes,” Appl. Phys. Lett. 41, 95–98 (1982).
    [Crossref]
  31. H. Ando, Y. Yamauchi, N. Susa, “High-speed planar InP/InGaAs avalanche photodiode fabricated by vapour phase epitaxy,” Electron. Lett. 19, 543–545 (1983).
    [Crossref]
  32. G. E. Stillman, C. M. Wolfe, “Avalanche photodiodes,” in Semiconductors and Semimetals, Vol. 12: Infrared Detectors II, R. K. Willardson, A. C. Beer, eds. (Academic, New York, 1977).
    [Crossref]
  33. R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
    [Crossref] [PubMed]
  34. E. L. Portnoi, N. M. Stel’makh, A. V. Chelnokov, “Characteristics of heterostructure lasers with a saturable absorber fabricated by deep ion implantation,” Sov. Tech. Phys. Lett. 15, 157–158 (1989).
  35. F. Zappa, A. Lacaita, S. Cova, P. Webb, “Nanosecond single-photon timing with InGaAs/InP photodiodes,” Opt. Lett. 19, 846–848 (1994).
    [Crossref] [PubMed]
  36. F. Zappa, A. L. Lacaita, S. Cova, P. Lovati, “Solid state single-photon detectors,” Opt. Eng. 35, 938–945 (1996).
    [Crossref]
  37. A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990).
    [Crossref]
  38. Lightwave Semiconductors Data Book (Fujitsu, Ltd., Tokyo, Japan, 1992).

1999 (1)

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

1998 (3)

G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug and play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[Crossref]

H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[Crossref]

G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[Crossref]

1997 (3)

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[Crossref] [PubMed]

P. D. Townsend, “Quantum cryptography on multi-user optical fibre networks,” Nature (London) 385, 47–49 (1997).
[Crossref]

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–189 (1997).
[Crossref]

1996 (5)

1995 (1)

R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, M. Schauer, “Quantum cryptography,” Contemp. Phys. 36(3), 149–163 (1995).

1994 (4)

1992 (3)

G. S. Buller, J. S. Massa, A. C. Walker, “All solid state microscope-based system for picosecond time-resolved photoluminescence measurements on II-VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[Crossref]

J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
[Crossref]

Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating point guard ring and double diffused junction,” J. Lightwave Technol. 10, 182–193 (1992).
[Crossref]

1990 (1)

A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990).
[Crossref]

1989 (1)

E. L. Portnoi, N. M. Stel’makh, A. V. Chelnokov, “Characteristics of heterostructure lasers with a saturable absorber fabricated by deep ion implantation,” Sov. Tech. Phys. Lett. 15, 157–158 (1989).

1988 (1)

K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, H. Ishihara, “Planar structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 micron wavelength optical communication use,” J. Lightwave Technol. 6, 1643–1655 (1988).
[Crossref]

1986 (3)

R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
[Crossref] [PubMed]

G. Ripamonti, S. Cova, “Optical time domain reflectometry with centimetre resolution at 10-15W sensitivity,” Electron. Lett. 22, 818–819 (1986).
[Crossref]

N. S. Rayit, L. J. Arnold, “A monomode optical time domain reflectometer using a photon counting technique,” GEC J. Res. 4, 223–227 (1986).

1985 (1)

B. F. Levine, C. G. Bethea, J. C. Campbell, “1.52 µm room temperature photon counting optical time domain reflectometer,” Electron. Lett. 21, 194–196 (1985).
[Crossref]

1983 (1)

H. Ando, Y. Yamauchi, N. Susa, “High-speed planar InP/InGaAs avalanche photodiode fabricated by vapour phase epitaxy,” Electron. Lett. 19, 543–545 (1983).
[Crossref]

1982 (2)

S. R. Forrest, O. K. Kim, R. G. Smith, “Optical response time of In(0.53)Ga(0.47)As/InP avalanche photodiodes,” Appl. Phys. Lett. 41, 95–98 (1982).
[Crossref]

S. R. Forrest, R. G. Smith, O. K. Kim, “Performance of InGaAs/InP avalanche photodiodes,” IEEE J. Quantum Electron. 18, 2040–2048 (1982).
[Crossref]

1980 (1)

I. Umebu, A. N. M. M. Choudhury, P. N. Robson, “Ionisation coefficients measured in abrupt InP junctions,” Appl. Phys. Lett. 36, 302–303 (1980).
[Crossref]

1966 (1)

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Devices 13, 164–168 (1966).
[Crossref]

Ackley, D. E.

Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating point guard ring and double diffused junction,” J. Lightwave Technol. 10, 182–193 (1992).
[Crossref]

Alde, D. M.

R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, M. Schauer, “Quantum cryptography,” Contemp. Phys. 36(3), 149–163 (1995).

Ando, H.

H. Ando, Y. Yamauchi, N. Susa, “High-speed planar InP/InGaAs avalanche photodiode fabricated by vapour phase epitaxy,” Electron. Lett. 19, 543–545 (1983).
[Crossref]

Arnold, L. J.

N. S. Rayit, L. J. Arnold, “A monomode optical time domain reflectometer using a photon counting technique,” GEC J. Res. 4, 223–227 (1986).

Bechmann-Pasquinucci, H.

H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[Crossref]

Bethea, C. G.

B. F. Levine, C. G. Bethea, J. C. Campbell, “1.52 µm room temperature photon counting optical time domain reflectometer,” Electron. Lett. 21, 194–196 (1985).
[Crossref]

Bourennane, M.

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

Brown, R. G. W.

Bryce, A. C.

S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
[Crossref]

Buller, G. S.

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[Crossref] [PubMed]

G. S. Buller, S. J. Fancey, J. S. Massa, A. C. Walker, S. Cova, A. Lacaita, “Time-resolved photoluminescence measurements of InGaAs/InP multiple-quantum-well structures at 1.3-µm wavelengths by use of germanium single-photon avalanche photodiodes,” Appl. Opt. 35, 916–921 (1996).
[Crossref] [PubMed]

S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
[Crossref]

J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
[Crossref]

G. S. Buller, J. S. Massa, A. C. Walker, “All solid state microscope-based system for picosecond time-resolved photoluminescence measurements on II-VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[Crossref]

Campbell, J. C.

B. F. Levine, C. G. Bethea, J. C. Campbell, “1.52 µm room temperature photon counting optical time domain reflectometer,” Electron. Lett. 21, 194–196 (1985).
[Crossref]

Cavenett, B. C.

J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
[Crossref]

Chelnokov, A. V.

E. L. Portnoi, N. M. Stel’makh, A. V. Chelnokov, “Characteristics of heterostructure lasers with a saturable absorber fabricated by deep ion implantation,” Sov. Tech. Phys. Lett. 15, 157–158 (1989).

Choudhury, A. N. M. M.

I. Umebu, A. N. M. M. Choudhury, P. N. Robson, “Ionisation coefficients measured in abrupt InP junctions,” Appl. Phys. Lett. 36, 302–303 (1980).
[Crossref]

Cova, S.

De La Rue, R. M.

S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
[Crossref]

Dyer, P.

R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, M. Schauer, “Quantum cryptography,” Contemp. Phys. 36(3), 149–163 (1995).

Fancey, S.

S. Fancey, “Single-photon avalanche diodes for time-resolved photoluminescence measurements in the near infra-red,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 1996).

Fancey, S. J.

Forrest, S. R.

Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating point guard ring and double diffused junction,” J. Lightwave Technol. 10, 182–193 (1992).
[Crossref]

S. R. Forrest, O. K. Kim, R. G. Smith, “Optical response time of In(0.53)Ga(0.47)As/InP avalanche photodiodes,” Appl. Phys. Lett. 41, 95–98 (1982).
[Crossref]

S. R. Forrest, R. G. Smith, O. K. Kim, “Performance of InGaAs/InP avalanche photodiodes,” IEEE J. Quantum Electron. 18, 2040–2048 (1982).
[Crossref]

Francese, P. A.

Gautier, J.

G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug and play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[Crossref]

Gautier, J. D.

Gibson, F.

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

Gisin, N.

G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug and play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[Crossref]

H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[Crossref]

G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[Crossref]

Gower, J.

J. Gower, Optical Communication Systems, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1993).

Guinnard, O.

G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug and play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[Crossref]

Hening, A.

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

Hladky, J.

Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating point guard ring and double diffused junction,” J. Lightwave Technol. 10, 182–193 (1992).
[Crossref]

Ho, C.

Horsburgh, G.

J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
[Crossref]

Hufstedler, E. G.

N. G. Woodard, E. G. Hufstedler, G. P. Lafyatis, “Photon counting using a large area avalanche photodiode cooled to 100K,” Appl. Phys. Lett. 64, 1177–1179 (1994).
[Crossref]

Hughes, R. J.

R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, M. Schauer, “Quantum cryptography,” Contemp. Phys. 36(3), 149–163 (1995).

Ishihara, H.

K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, H. Ishihara, “Planar structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 micron wavelength optical communication use,” J. Lightwave Technol. 6, 1643–1655 (1988).
[Crossref]

Jonsson, P.

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

Karlsson, A.

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

Kim, O. K.

S. R. Forrest, O. K. Kim, R. G. Smith, “Optical response time of In(0.53)Ga(0.47)As/InP avalanche photodiodes,” Appl. Phys. Lett. 41, 95–98 (1982).
[Crossref]

S. R. Forrest, R. G. Smith, O. K. Kim, “Performance of InGaAs/InP avalanche photodiodes,” IEEE J. Quantum Electron. 18, 2040–2048 (1982).
[Crossref]

Knight, D.

Lacaita, A.

Lacaita, A. L.

F. Zappa, A. L. Lacaita, S. Cova, P. Lovati, “Solid state single-photon detectors,” Opt. Eng. 35, 938–945 (1996).
[Crossref]

Lafyatis, G. P.

N. G. Woodard, E. G. Hufstedler, G. P. Lafyatis, “Photon counting using a large area avalanche photodiode cooled to 100K,” Appl. Phys. Lett. 64, 1177–1179 (1994).
[Crossref]

Lange, M. J.

Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating point guard ring and double diffused junction,” J. Lightwave Technol. 10, 182–193 (1992).
[Crossref]

Levine, B. F.

B. F. Levine, C. G. Bethea, J. C. Campbell, “1.52 µm room temperature photon counting optical time domain reflectometer,” Electron. Lett. 21, 194–196 (1985).
[Crossref]

Liu, Y.

Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating point guard ring and double diffused junction,” J. Lightwave Technol. 10, 182–193 (1992).
[Crossref]

Ljunggren, D.

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

Lovati, P.

Luther, G. G.

R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, M. Schauer, “Quantum cryptography,” Contemp. Phys. 36(3), 149–163 (1995).

Makita, K.

K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, H. Ishihara, “Planar structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 micron wavelength optical communication use,” J. Lightwave Technol. 6, 1643–1655 (1988).
[Crossref]

Marsh, J. H.

S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
[Crossref]

Massa, J. S.

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[Crossref] [PubMed]

G. S. Buller, S. J. Fancey, J. S. Massa, A. C. Walker, S. Cova, A. Lacaita, “Time-resolved photoluminescence measurements of InGaAs/InP multiple-quantum-well structures at 1.3-µm wavelengths by use of germanium single-photon avalanche photodiodes,” Appl. Opt. 35, 916–921 (1996).
[Crossref] [PubMed]

S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
[Crossref]

J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
[Crossref]

G. S. Buller, J. S. Massa, A. C. Walker, “All solid state microscope-based system for picosecond time-resolved photoluminescence measurements on II-VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[Crossref]

Mastrapasqua, M.

A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990).
[Crossref]

McIntyre, R. J.

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Devices 13, 164–168 (1966).
[Crossref]

McKee, A.

S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
[Crossref]

McLean, C. J.

S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
[Crossref]

Morgan, G. L.

R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, M. Schauer, “Quantum cryptography,” Contemp. Phys. 36(3), 149–163 (1995).

Mullins, J. T.

J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
[Crossref]

O’Connor, D. V.

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Olsen, G. H.

Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating point guard ring and double diffused junction,” J. Lightwave Technol. 10, 182–193 (1992).
[Crossref]

Owens, P. C. M.

Phillips, D.

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Portnoi, E. L.

E. L. Portnoi, N. M. Stel’makh, A. V. Chelnokov, “Characteristics of heterostructure lasers with a saturable absorber fabricated by deep ion implantation,” Sov. Tech. Phys. Lett. 15, 157–158 (1989).

Priehorsky, W. C.

Prior, K. A.

J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
[Crossref]

Rarity, J. G.

Rayit, N. S.

N. S. Rayit, L. J. Arnold, “A monomode optical time domain reflectometer using a photon counting technique,” GEC J. Res. 4, 223–227 (1986).

Ribordy, G.

G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug and play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[Crossref]

H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[Crossref]

G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[Crossref]

Ridley, K. D.

Ripamonti, G.

G. Ripamonti, S. Cova, “Optical time domain reflectometry with centimetre resolution at 10-15W sensitivity,” Electron. Lett. 22, 818–819 (1986).
[Crossref]

Robson, P. N.

I. Umebu, A. N. M. M. Choudhury, P. N. Robson, “Ionisation coefficients measured in abrupt InP junctions,” Appl. Phys. Lett. 36, 302–303 (1980).
[Crossref]

Schauer, M.

R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, M. Schauer, “Quantum cryptography,” Contemp. Phys. 36(3), 149–163 (1995).

Smith, R. C.

Smith, R. G.

S. R. Forrest, R. G. Smith, O. K. Kim, “Performance of InGaAs/InP avalanche photodiodes,” IEEE J. Quantum Electron. 18, 2040–2048 (1982).
[Crossref]

S. R. Forrest, O. K. Kim, R. G. Smith, “Optical response time of In(0.53)Ga(0.47)As/InP avalanche photodiodes,” Appl. Phys. Lett. 41, 95–98 (1982).
[Crossref]

Stel’makh, N. M.

E. L. Portnoi, N. M. Stel’makh, A. V. Chelnokov, “Characteristics of heterostructure lasers with a saturable absorber fabricated by deep ion implantation,” Sov. Tech. Phys. Lett. 15, 157–158 (1989).

Stillman, G. E.

G. E. Stillman, C. M. Wolfe, “Avalanche photodiodes,” in Semiconductors and Semimetals, Vol. 12: Infrared Detectors II, R. K. Willardson, A. C. Beer, eds. (Academic, New York, 1977).
[Crossref]

Sugimoto, Y.

K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, H. Ishihara, “Planar structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 micron wavelength optical communication use,” J. Lightwave Technol. 6, 1643–1655 (1988).
[Crossref]

Sundberg, E.

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

Susa, N.

H. Ando, Y. Yamauchi, N. Susa, “High-speed planar InP/InGaAs avalanche photodiode fabricated by vapour phase epitaxy,” Electron. Lett. 19, 543–545 (1983).
[Crossref]

Taguchi, K.

K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, H. Ishihara, “Planar structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 micron wavelength optical communication use,” J. Lightwave Technol. 6, 1643–1655 (1988).
[Crossref]

Tapster, P. R.

Torikai, T.

K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, H. Ishihara, “Planar structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 micron wavelength optical communication use,” J. Lightwave Technol. 6, 1643–1655 (1988).
[Crossref]

Townsend, P. D.

P. D. Townsend, “Quantum cryptography on multi-user optical fibre networks,” Nature (London) 385, 47–49 (1997).
[Crossref]

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–189 (1997).
[Crossref]

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, P. D. Townsend, “Photon counting with passively quenched germanium avalanche photodiodes,” Appl. Opt. 33, 6895–6901 (1994).
[Crossref] [PubMed]

Tsegaye, T.

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

Umebu, I.

I. Umebu, A. N. M. M. Choudhury, P. N. Robson, “Ionisation coefficients measured in abrupt InP junctions,” Appl. Phys. Lett. 36, 302–303 (1980).
[Crossref]

Walker, A. C.

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[Crossref] [PubMed]

G. S. Buller, S. J. Fancey, J. S. Massa, A. C. Walker, S. Cova, A. Lacaita, “Time-resolved photoluminescence measurements of InGaAs/InP multiple-quantum-well structures at 1.3-µm wavelengths by use of germanium single-photon avalanche photodiodes,” Appl. Opt. 35, 916–921 (1996).
[Crossref] [PubMed]

S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
[Crossref]

G. S. Buller, J. S. Massa, A. C. Walker, “All solid state microscope-based system for picosecond time-resolved photoluminescence measurements on II-VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[Crossref]

J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
[Crossref]

Wallace, A. M.

Webb, P.

Wolfe, C. M.

G. E. Stillman, C. M. Wolfe, “Avalanche photodiodes,” in Semiconductors and Semimetals, Vol. 12: Infrared Detectors II, R. K. Willardson, A. C. Beer, eds. (Academic, New York, 1977).
[Crossref]

Woodard, N. G.

N. G. Woodard, E. G. Hufstedler, G. P. Lafyatis, “Photon counting using a large area avalanche photodiode cooled to 100K,” Appl. Phys. Lett. 64, 1177–1179 (1994).
[Crossref]

Yamauchi, Y.

H. Ando, Y. Yamauchi, N. Susa, “High-speed planar InP/InGaAs avalanche photodiode fabricated by vapour phase epitaxy,” Electron. Lett. 19, 543–545 (1983).
[Crossref]

Zappa, F.

Zbinden, H.

G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[Crossref]

G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug and play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[Crossref]

H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[Crossref]

Appl. Opt. (7)

Appl. Phys. B (1)

H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[Crossref]

Appl. Phys. Lett. (4)

J. S. Massa, G. S. Buller, A. C. Walker, G. Horsburgh, J. T. Mullins, K. A. Prior, B. C. Cavenett, “Carrier recombination studies of ZnCdSe/ZnSe single quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 66, 1346–1348 (1992).
[Crossref]

N. G. Woodard, E. G. Hufstedler, G. P. Lafyatis, “Photon counting using a large area avalanche photodiode cooled to 100K,” Appl. Phys. Lett. 64, 1177–1179 (1994).
[Crossref]

S. R. Forrest, O. K. Kim, R. G. Smith, “Optical response time of In(0.53)Ga(0.47)As/InP avalanche photodiodes,” Appl. Phys. Lett. 41, 95–98 (1982).
[Crossref]

I. Umebu, A. N. M. M. Choudhury, P. N. Robson, “Ionisation coefficients measured in abrupt InP junctions,” Appl. Phys. Lett. 36, 302–303 (1980).
[Crossref]

Contemp. Phys. (1)

R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, M. Schauer, “Quantum cryptography,” Contemp. Phys. 36(3), 149–163 (1995).

Electron. Lett. (6)

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–189 (1997).
[Crossref]

G. Ripamonti, S. Cova, “Optical time domain reflectometry with centimetre resolution at 10-15W sensitivity,” Electron. Lett. 22, 818–819 (1986).
[Crossref]

G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug and play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[Crossref]

B. F. Levine, C. G. Bethea, J. C. Campbell, “1.52 µm room temperature photon counting optical time domain reflectometer,” Electron. Lett. 21, 194–196 (1985).
[Crossref]

H. Ando, Y. Yamauchi, N. Susa, “High-speed planar InP/InGaAs avalanche photodiode fabricated by vapour phase epitaxy,” Electron. Lett. 19, 543–545 (1983).
[Crossref]

A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990).
[Crossref]

GEC J. Res. (1)

N. S. Rayit, L. J. Arnold, “A monomode optical time domain reflectometer using a photon counting technique,” GEC J. Res. 4, 223–227 (1986).

IEEE J. Quantum Electron. (1)

S. R. Forrest, R. G. Smith, O. K. Kim, “Performance of InGaAs/InP avalanche photodiodes,” IEEE J. Quantum Electron. 18, 2040–2048 (1982).
[Crossref]

IEEE Trans. Electron Devices (1)

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Devices 13, 164–168 (1966).
[Crossref]

J. Appl. Phys. (1)

S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh, R. M. De La Rue, “Time-resolved photoluminescence microscopy of GaInAs/GaInAsP quantum wells intermixed using a pulsed laser technique,” J. Appl. Phys. 79, 9390–9392 (1996).
[Crossref]

J. Lightwave Technol. (2)

K. Taguchi, T. Torikai, Y. Sugimoto, K. Makita, H. Ishihara, “Planar structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 micron wavelength optical communication use,” J. Lightwave Technol. 6, 1643–1655 (1988).
[Crossref]

Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating point guard ring and double diffused junction,” J. Lightwave Technol. 10, 182–193 (1992).
[Crossref]

Nature (London) (1)

P. D. Townsend, “Quantum cryptography on multi-user optical fibre networks,” Nature (London) 385, 47–49 (1997).
[Crossref]

Opt. Eng. (1)

F. Zappa, A. L. Lacaita, S. Cova, P. Lovati, “Solid state single-photon detectors,” Opt. Eng. 35, 938–945 (1996).
[Crossref]

Opt. Exp. (1)

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Exp. 4, 383–387 (1999).
[Crossref]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

G. S. Buller, J. S. Massa, A. C. Walker, “All solid state microscope-based system for picosecond time-resolved photoluminescence measurements on II-VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[Crossref]

Sov. Tech. Phys. Lett. (1)

E. L. Portnoi, N. M. Stel’makh, A. V. Chelnokov, “Characteristics of heterostructure lasers with a saturable absorber fabricated by deep ion implantation,” Sov. Tech. Phys. Lett. 15, 157–158 (1989).

Other (6)

G. E. Stillman, C. M. Wolfe, “Avalanche photodiodes,” in Semiconductors and Semimetals, Vol. 12: Infrared Detectors II, R. K. Willardson, A. C. Beer, eds. (Academic, New York, 1977).
[Crossref]

S. Fancey, “Single-photon avalanche diodes for time-resolved photoluminescence measurements in the near infra-red,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 1996).

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

J. Gower, Optical Communication Systems, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1993).

Hamamatsu R5509–72 specification sheet (Hamamatsu, Corporation, Bridgewater, N.J., 1999).

Lightwave Semiconductors Data Book (Fujitsu, Ltd., Tokyo, Japan, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

(a) Schematic diagram of the InGaAs/InP SAGM APD. (b) The band profile of the device clearly showing the valence-band discontinuity at the heterointerface. (c) The electric field of the device at the breakdown point and at punch-through.

Fig. 2
Fig. 2

Schematic of a TCSPC system. ADC, analog-to-digital converter; TAC, time-to-amplitude converter; MCA, multichannel analyzer; AQC, active quench circuit.

Fig. 3
Fig. 3

Schematic of the system used to characterize the free-space Fujitsu devices. A 60-dB attenuator was used to reduce the 105 photons/pulse coupled into the fiber to the appropriate level of 0.1 photon/pulse.

Fig. 4
Fig. 4

Dark current and photocurrent of the 80-µm-diameter Fujitsu APD, device A, at 77 and 293 K. The punch-through position can clearly be seen at ∼34 V. The IV tracer used for these experiments could not resolve below 1 pA, therefore the current looks erratic below this value on the 77 K dark curve.

Fig. 5
Fig. 5

IV dark characteristic of the 30-µm-diameter Fujitsu APD, device B, at 77 and 293 K and also the photocurrent curve taken at 293 K using 1.55-µm wavelength light. The punch-through position can clearly be seen at ∼33 V. The IV tracer used for these experiments could not resolve below 1 pA, therefore the current looks erratic below this value on the 77 K dark curve.

Fig. 6
Fig. 6

Graph of breakdown voltage versus temperature for device B. The temperature at which punch-through occurs, 138 K, is indicated.

Fig. 7
Fig. 7

Detection efficiency of both devices A and B as a function of temperature. At each temperature the devices were operated at an excess bias of 3 V. The detection efficiency of device B is effectively zero at temperatures less than 150 K because the device is not punched through. Curves are drawn between the measured points to aid the reader.

Fig. 8
Fig. 8

Detection efficiency versus temperature for device B at a constant 5% excess bias. With a constant relative excess bias, the trigger probability of the device is the same for each temperature. The detection efficiency initially increases because of the large increase in quantum efficiency caused by an increase in the probability of photogenerated holes that surpass the heterointerface barrier as the device becomes more punched through. The detection efficiency levels off above 190 K. At this point it is assumed that the quantum efficiency reaches a maximum value; and, because the trigger probability remains constant, the detection efficiency also remains constant.

Fig. 9
Fig. 9

MCA probability histograms showing the timing response of device A at two different bias settings above breakdown. There is a noticeable decrease in instrumental response time at higher excess bias.

Fig. 10
Fig. 10

Instrumental response time (FWHM) versus temperature for both device A and device B at an excess bias of 3 V.

Fig. 11
Fig. 11

Dark count probability (within a 50-ns window) per cycle versus a repetition rate of the gate pulse for an 80-µm-diameter Fujitsu device biased at 1% relative excess bias at different temperatures.

Fig. 12
Fig. 12

Dark count probability (within a 50-ns window) per cycle of both devices A and B as a function of temperature. At each temperature the devices were operated at an excess bias of 3 V.

Fig. 13
Fig. 13

NEP versus temperature for both device A and device B. At each temperature the device was operated at an excess bias of 3 V.

Fig. 14
Fig. 14

Detection efficiency and dark count probability versus excess bias for device A at 77 K.

Fig. 15
Fig. 15

NEP versus excess bias for device A at 77 K.

Fig. 16
Fig. 16

Instrumental response versus excess bias for device A at 77 K.

Fig. 17
Fig. 17

Detection efficiency versus wavelength for various single-photon detectors.

Fig. 18
Fig. 18

NEP versus wavelength for various single-photon detectors.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

IA=γ exp-θm01/2εg3/2/qEI,
γ=2m*/εg1/2q3EIV/4π22,
Me=11-0W α exp -0xα-βdxdx,
0W α exp-0xα-βdxdx=1.
NEP=hνDE2R,

Metrics