## Abstract

Morphology-dependent resonances in cylindrical microparticles are
investigated and the properties of particle matter considered. The
spatial structures of resonance modes inside microparticles are
studied. It is shown that the resonant mode with a lesser quality
factor can have a higher value of internal field intensity inside
microparticles. Considering a small amount of absorption of particle
matter permits more-or-less exact prediction of the value of the
internal field intensity, which may increase or decrease, depending on
the properties of the particle matter.

© 2000 Optical Society of America

Full Article |

PDF Article
### Equations (6)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\frac{1}{Q}=\frac{1}{{Q}_{\mathrm{ext}}}+\frac{1}{{Q}_{\mathrm{abs}}},$$
(2)
$${\left({{E}_{1}}^{\mathrm{int}}\right)}_{r}={\left({{E}_{1}}^{\mathrm{int}}\right)}_{\mathrm{\phi}}=0,{\left({{E}_{1}}^{\mathrm{int}}\right)}_{z}={\mathit{imE}}_{0}\left[2\sum _{l=1}^{\infty}{\left(-i\right)}^{l}cosl\mathrm{\phi}{\mathbf{J}}_{l}\left(\mathit{mkr}\right){d}_{l}+{\mathbf{J}}_{0}\left(\mathit{mkr}\right){d}_{0}\right].$$
(3)
$${\left({{E}_{2}}^{\mathrm{int}}\right)}_{r}=-\frac{2{E}_{0}}{\mathit{mkr}}\sum _{l=1}^{\infty}-{\left(i\right)}^{l}sinl\mathrm{\phi}{\mathbf{J}}_{l}\left(\mathit{mkr}\right){c}_{l},{\left({{E}_{2}}^{\mathrm{int}}\right)}_{z}=0,{\left({{E}_{2}}^{\mathrm{int}}\right)}_{\mathrm{\phi}}=-{\mathit{mE}}_{0}\left[2\sum _{l=1}^{\infty}{\left(-i\right)}^{l}cosl\mathrm{\phi}{\mathbf{J}}_{l}\prime \left(\mathit{mkr}\right){c}_{l}+{\mathbf{J}}_{0}\prime \left(\mathit{mkr}\right){c}_{0}\right],$$
(4)
$${d}_{l}=-\frac{{\mathbf{J}}_{l}\left(\mathrm{\rho}\right)}{m{\mathbf{J}}_{l}\left(m\mathrm{\rho}\right)}\left(i+{b}_{l}\right),$$
(5)
$${c}_{l}=-\frac{{\mathbf{J}}_{l}\left(\mathrm{\rho}\right)}{{m}^{2}{\mathbf{J}}_{l}\left(m\mathrm{\rho}\right)}\left(i+{a}_{l}\right),$$
(6)
$${b}_{l}=-i\frac{{D}_{l}\left(\mathrm{\rho}\right)-{\mathit{mD}}_{l}\left(m\mathrm{\rho}\right)}{{G}_{l}\left(\mathrm{\rho}\right)-{\mathit{mD}}_{l}\left(m\mathrm{\rho}\right)},{a}_{l}=-i\frac{{\mathit{mD}}_{l}\left(\mathrm{\rho}\right)-{D}_{l}\left(m\mathrm{\rho}\right)}{{\mathit{mG}}_{l}\left(\mathrm{\rho}\right)-{D}_{l}\left(m\mathrm{\rho}\right)}.$$