Abstract

Morphology-dependent resonances in cylindrical microparticles are investigated and the properties of particle matter considered. The spatial structures of resonance modes inside microparticles are studied. It is shown that the resonant mode with a lesser quality factor can have a higher value of internal field intensity inside microparticles. Considering a small amount of absorption of particle matter permits more-or-less exact prediction of the value of the internal field intensity, which may increase or decrease, depending on the properties of the particle matter.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Chang, A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  2. J. F. Owen, R. K. Chang, P. W. Barber, “Internal electric field distribution of a dielectric cylinder at resonance wavelengths,” Opt. Lett. 6, 540–542 (1981).
    [CrossRef] [PubMed]
  3. J. C. Knight, H. S. T. Driver, G. N. Robertson, “Morphology-dependent resonances in a cylindrical dye microlaser: mode assignments, cavity Q values, and critical dye concentrations,” J. Opt. Soc. Am. B 11, 2046–2053 (1994).
    [CrossRef]
  4. H. C. van de Hulst, Scattering by Small Particles (Dover, New York, 1981).
  5. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  6. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  7. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  8. P. W. Barber, R. K. Chang, eds. Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988).
  9. J. Popp, M. H. Fields, R. K. Chang, “Q switching by saturable absorption in microparticles: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997).
    [CrossRef]
  10. G. Videen, J. Li, P. Chylek, “Resonances and poles of weakly absorbing spheres,” J. Opt. Soc. Am. A 12, 916–921 (1995).
    [CrossRef]
  11. L. G. Astaf’eva, G. P. Ledneva, “Spatial structures in microparticles under resonance conditions,” Opt. Spectros. 86, 723–727 (1999).

1999 (1)

L. G. Astaf’eva, G. P. Ledneva, “Spatial structures in microparticles under resonance conditions,” Opt. Spectros. 86, 723–727 (1999).

1997 (1)

1995 (1)

1994 (1)

1981 (1)

Astaf’eva, L. G.

L. G. Astaf’eva, G. P. Ledneva, “Spatial structures in microparticles under resonance conditions,” Opt. Spectros. 86, 723–727 (1999).

Barber, P. W.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Chang, R. K.

Chylek, P.

Driver, H. S. T.

Fields, M. H.

Hill, S. C.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Knight, J. C.

Ledneva, G. P.

L. G. Astaf’eva, G. P. Ledneva, “Spatial structures in microparticles under resonance conditions,” Opt. Spectros. 86, 723–727 (1999).

Li, J.

Owen, J. F.

Popp, J.

Robertson, G. N.

van de Hulst, H. C.

H. C. van de Hulst, Scattering by Small Particles (Dover, New York, 1981).

Videen, G.

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Opt. Spectros. (1)

L. G. Astaf’eva, G. P. Ledneva, “Spatial structures in microparticles under resonance conditions,” Opt. Spectros. 86, 723–727 (1999).

Other (6)

H. C. van de Hulst, Scattering by Small Particles (Dover, New York, 1981).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

P. W. Barber, R. K. Chang, eds. Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988).

R. K. Chang, A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Envelopes of the squared modules of the amplitude coefficients of the magnitude resonance mode as size parameter ρ varies for different values of n: 1, n = 1.4; 2, n = 1.53; 3, n = 1.7. The positions of the resonance modes are marked by asterisks. χ = 0 and s = 1.

Fig. 2
Fig. 2

Envelopes of the squared modules of the amplitude coefficients of the magnitude resonance mode as size parameter ρ varies for different values of n: 1, n = 1.4; 2, n = 1.53; 3, n = 1.7. The positions of the resonance modes are marked by asterisks. χ = 10-7 and s = 1.

Fig. 3
Fig. 3

Envelopes of the squared modules of the amplitude coefficients of the magnitude resonance mode as size parameter ρ varies for different values of χ and s: 1′, χ = 0, s = 1; 1″, χ = 0, s = 2; 2′, χ = 10-7, s = 1; 2″, χ = 10-7, s = 2. The positions of the resonance modes are marked by asterisks. n = 1.53.

Fig. 4
Fig. 4

Internal intensity distribution in the equatorial plane of a circular microcylinder for the TE polarization resonance mode with l = 7, s = 1, and ρ = 6.501 432 309. The arrow shows the direction of the incident laser beam.

Fig. 5
Fig. 5

Internal intensity distribution in the equatorial plane of a circular microcylinder for the TE polarization resonance mode with l = 50, s = 1, ρ = 36.87027194, and m = 1.53 - i10-7. The arrow shows the direction of the incident laser beam.

Fig. 6
Fig. 6

Internal intensity distribution in the equatorial plane of a circular microcylinder for the TE polarization resonance mode with l = 66, s = 1, ρ = 47.763207158, and m = 1.53 - i10-7. The arrow shows the direction of the incident laser beam.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1Q=1Qext+1Qabs,
E1intr=E1intφ=0,  E1intz=imE02 l=1-il cos lφJlmkrdl+J0mkrd0.
E2intr=-2E0mkrl=1-il sin lφJlmkrcl,  E2intz=0,  E2intφ=-mE02 l=1-il cos lφJlmkrcl+J0mkrc0,
dl=-JlρmJlmρi+bl,
cl=-Jlρm2Jlmρi+al,
bl=-i Dlρ-mDlmρGlρ-mDlmρ,  al=-i mDlρ-DlmρmGlρ-Dlmρ.

Metrics