Abstract

We have achieved quantitative two-dimensional Raman measurements of the concentration of methane in a laminar methane jet into nitrogen without multipassing the incident laser sheet with a coaxial flash-lamp-pumped dye laser. The measurements are compared with the results of direct numerical simulation for the particular flow field. We conclude that the accuracy of the technique is determined by limitations in the dynamic range and in the spatial resolution of the data acquired with an intensified camera.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Long, “Multidimensional imaging in combusting flows by Lorenz-Mie, Rayleigh and Raman scattering,” in Instrumentation for Flows with Combustion, A. M. K. P. Taylor, ed. (Academic, London, 1993), p. 467.
  2. D. L. Hartley, “Raman gas mixing measurements and Ramanography,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1973), p. 311.
  3. B. F. Webber, M. B. Long, R. K. Chang, “Two dimensional average concentration measurements in a jet flow by Raman scattering,” Appl. Phys. Lett. 35, 119–121 (1979).
    [CrossRef]
  4. C. K. Miller, J. W. Lavasek, E. D. Jones, “5-J, 1.8-msec pulse, 10-pps dye laser for combustion applications,” Appl. Opt. 21, 1764–1766 (1982).
    [CrossRef] [PubMed]
  5. M. B. Long, D. C. Fourguette, M. C. Escoda, C. B. Layne, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
    [CrossRef] [PubMed]
  6. M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous two-dimensional mapping of species concentration and temperature in turbulent flames,” Opt. Lett. 10, 267–269 (1985).
    [CrossRef] [PubMed]
  7. M. Namazian, R. L. Schmitt, M. B. Long, “Two-wavelength single laser CH and CH4 imaging in a lifted turbulent diffusion flame,” Appl. Opt. 27, 3597–3600 (1988).
    [CrossRef] [PubMed]
  8. M. Namazian, J. Kelly, R. W. Schefer, S. C. Johnston, M. B. Long, “Nonpremixed bluff-body burner flow and flame imaging study,” Exp. Fluids 8, 216–228 (1989).
    [CrossRef]
  9. R. W. Schefer, M. Namazian, J. Kelly, “Combustion of turbulent-jet and bluff-body stabilized flames,” Combust. Sci. Technol. 67, 123–146 (1989).
    [CrossRef]
  10. D. F. Marran, J. H. Frank, M. B. Long, S. H. Stårner, R. W. Bilger, “Intracavity technique for improved Raman/Rayleigh imaging in flames,” Opt. Lett. 20, 791–793 (1995).
    [CrossRef] [PubMed]
  11. P. H. Paul, I. van Cruyningen, R. K. Hanson, G. Kychakoff, “High resolution digital flowfield imaging of jets,” Exp. Fluids 9, 241–251 (1990).
    [CrossRef]
  12. J. R. Janesick, T. Elliot, S. Collins, M. M. Blouke, J. Freeman, “Scientific charge coupled devices,” Opt. Eng. 26, 692–714 (1987).
  13. W. K. Pratt, Digital Image Processing (Wiley, New York, 1978).
  14. D. C. Kyritsis, “Quantitative, single-shot, two-dimensional spontaneous Raman measurements for fluid mechanics and engine applications,” Ph.D. dissertation (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1998).
  15. V. Magi, “REC-87. A new 3-D code for flows, sprays and combustion in reciprocating and rotary engines,” (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1987).
  16. J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).
  17. S. I. Pai, T. Hsieh, “Numerical solution of laminar jet mixing with and without free stream,” Appl. Sci. Res. 27, 39–62 (1972).
    [CrossRef]
  18. S. Abramovich, A. Solan, “The initial development of a submerged laminar round jet,” J. Fluid Mech. 53, 791–801 (1973).
    [CrossRef]
  19. J. C. McDaniel, “Investigation of laser induced fluorescence for the measurement of density in compressible flows,” Ph.D. dissertation (Department of Astronautics and Aeronautics, Stanford University, Stanford, California, 1983).
  20. J. C. Russ, The Image Processing Handbook (CRC Press, Boca Raton, Fla., 1994), p. 168.

1995

1990

P. H. Paul, I. van Cruyningen, R. K. Hanson, G. Kychakoff, “High resolution digital flowfield imaging of jets,” Exp. Fluids 9, 241–251 (1990).
[CrossRef]

1989

M. Namazian, J. Kelly, R. W. Schefer, S. C. Johnston, M. B. Long, “Nonpremixed bluff-body burner flow and flame imaging study,” Exp. Fluids 8, 216–228 (1989).
[CrossRef]

R. W. Schefer, M. Namazian, J. Kelly, “Combustion of turbulent-jet and bluff-body stabilized flames,” Combust. Sci. Technol. 67, 123–146 (1989).
[CrossRef]

1988

1987

J. R. Janesick, T. Elliot, S. Collins, M. M. Blouke, J. Freeman, “Scientific charge coupled devices,” Opt. Eng. 26, 692–714 (1987).

1985

1983

1982

1979

B. F. Webber, M. B. Long, R. K. Chang, “Two dimensional average concentration measurements in a jet flow by Raman scattering,” Appl. Phys. Lett. 35, 119–121 (1979).
[CrossRef]

1973

S. Abramovich, A. Solan, “The initial development of a submerged laminar round jet,” J. Fluid Mech. 53, 791–801 (1973).
[CrossRef]

1972

S. I. Pai, T. Hsieh, “Numerical solution of laminar jet mixing with and without free stream,” Appl. Sci. Res. 27, 39–62 (1972).
[CrossRef]

Abramovich, S.

S. Abramovich, A. Solan, “The initial development of a submerged laminar round jet,” J. Fluid Mech. 53, 791–801 (1973).
[CrossRef]

Bilger, R. W.

Bird, R. B.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

Blouke, M. M.

J. R. Janesick, T. Elliot, S. Collins, M. M. Blouke, J. Freeman, “Scientific charge coupled devices,” Opt. Eng. 26, 692–714 (1987).

Chang, R. K.

B. F. Webber, M. B. Long, R. K. Chang, “Two dimensional average concentration measurements in a jet flow by Raman scattering,” Appl. Phys. Lett. 35, 119–121 (1979).
[CrossRef]

Collins, S.

J. R. Janesick, T. Elliot, S. Collins, M. M. Blouke, J. Freeman, “Scientific charge coupled devices,” Opt. Eng. 26, 692–714 (1987).

Curtiss, C. F.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

Elliot, T.

J. R. Janesick, T. Elliot, S. Collins, M. M. Blouke, J. Freeman, “Scientific charge coupled devices,” Opt. Eng. 26, 692–714 (1987).

Escoda, M. C.

Fourguette, D. C.

Frank, J. H.

Freeman, J.

J. R. Janesick, T. Elliot, S. Collins, M. M. Blouke, J. Freeman, “Scientific charge coupled devices,” Opt. Eng. 26, 692–714 (1987).

Hanson, R. K.

P. H. Paul, I. van Cruyningen, R. K. Hanson, G. Kychakoff, “High resolution digital flowfield imaging of jets,” Exp. Fluids 9, 241–251 (1990).
[CrossRef]

Hartley, D. L.

D. L. Hartley, “Raman gas mixing measurements and Ramanography,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1973), p. 311.

Hirschfelder, J. O.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

Hsieh, T.

S. I. Pai, T. Hsieh, “Numerical solution of laminar jet mixing with and without free stream,” Appl. Sci. Res. 27, 39–62 (1972).
[CrossRef]

Janesick, J. R.

J. R. Janesick, T. Elliot, S. Collins, M. M. Blouke, J. Freeman, “Scientific charge coupled devices,” Opt. Eng. 26, 692–714 (1987).

Johnston, S. C.

M. Namazian, J. Kelly, R. W. Schefer, S. C. Johnston, M. B. Long, “Nonpremixed bluff-body burner flow and flame imaging study,” Exp. Fluids 8, 216–228 (1989).
[CrossRef]

Jones, E. D.

Kelly, J.

M. Namazian, J. Kelly, R. W. Schefer, S. C. Johnston, M. B. Long, “Nonpremixed bluff-body burner flow and flame imaging study,” Exp. Fluids 8, 216–228 (1989).
[CrossRef]

R. W. Schefer, M. Namazian, J. Kelly, “Combustion of turbulent-jet and bluff-body stabilized flames,” Combust. Sci. Technol. 67, 123–146 (1989).
[CrossRef]

Kychakoff, G.

P. H. Paul, I. van Cruyningen, R. K. Hanson, G. Kychakoff, “High resolution digital flowfield imaging of jets,” Exp. Fluids 9, 241–251 (1990).
[CrossRef]

Kyritsis, D. C.

D. C. Kyritsis, “Quantitative, single-shot, two-dimensional spontaneous Raman measurements for fluid mechanics and engine applications,” Ph.D. dissertation (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1998).

Lavasek, J. W.

Layne, C. B.

Levin, P. S.

Long, M. B.

D. F. Marran, J. H. Frank, M. B. Long, S. H. Stårner, R. W. Bilger, “Intracavity technique for improved Raman/Rayleigh imaging in flames,” Opt. Lett. 20, 791–793 (1995).
[CrossRef] [PubMed]

M. Namazian, J. Kelly, R. W. Schefer, S. C. Johnston, M. B. Long, “Nonpremixed bluff-body burner flow and flame imaging study,” Exp. Fluids 8, 216–228 (1989).
[CrossRef]

M. Namazian, R. L. Schmitt, M. B. Long, “Two-wavelength single laser CH and CH4 imaging in a lifted turbulent diffusion flame,” Appl. Opt. 27, 3597–3600 (1988).
[CrossRef] [PubMed]

M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous two-dimensional mapping of species concentration and temperature in turbulent flames,” Opt. Lett. 10, 267–269 (1985).
[CrossRef] [PubMed]

M. B. Long, D. C. Fourguette, M. C. Escoda, C. B. Layne, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
[CrossRef] [PubMed]

B. F. Webber, M. B. Long, R. K. Chang, “Two dimensional average concentration measurements in a jet flow by Raman scattering,” Appl. Phys. Lett. 35, 119–121 (1979).
[CrossRef]

M. B. Long, “Multidimensional imaging in combusting flows by Lorenz-Mie, Rayleigh and Raman scattering,” in Instrumentation for Flows with Combustion, A. M. K. P. Taylor, ed. (Academic, London, 1993), p. 467.

Magi, V.

V. Magi, “REC-87. A new 3-D code for flows, sprays and combustion in reciprocating and rotary engines,” (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1987).

Marran, D. F.

McDaniel, J. C.

J. C. McDaniel, “Investigation of laser induced fluorescence for the measurement of density in compressible flows,” Ph.D. dissertation (Department of Astronautics and Aeronautics, Stanford University, Stanford, California, 1983).

Miller, C. K.

Namazian, M.

M. Namazian, J. Kelly, R. W. Schefer, S. C. Johnston, M. B. Long, “Nonpremixed bluff-body burner flow and flame imaging study,” Exp. Fluids 8, 216–228 (1989).
[CrossRef]

R. W. Schefer, M. Namazian, J. Kelly, “Combustion of turbulent-jet and bluff-body stabilized flames,” Combust. Sci. Technol. 67, 123–146 (1989).
[CrossRef]

M. Namazian, R. L. Schmitt, M. B. Long, “Two-wavelength single laser CH and CH4 imaging in a lifted turbulent diffusion flame,” Appl. Opt. 27, 3597–3600 (1988).
[CrossRef] [PubMed]

Pai, S. I.

S. I. Pai, T. Hsieh, “Numerical solution of laminar jet mixing with and without free stream,” Appl. Sci. Res. 27, 39–62 (1972).
[CrossRef]

Paul, P. H.

P. H. Paul, I. van Cruyningen, R. K. Hanson, G. Kychakoff, “High resolution digital flowfield imaging of jets,” Exp. Fluids 9, 241–251 (1990).
[CrossRef]

Pratt, W. K.

W. K. Pratt, Digital Image Processing (Wiley, New York, 1978).

Russ, J. C.

J. C. Russ, The Image Processing Handbook (CRC Press, Boca Raton, Fla., 1994), p. 168.

Schefer, R. W.

R. W. Schefer, M. Namazian, J. Kelly, “Combustion of turbulent-jet and bluff-body stabilized flames,” Combust. Sci. Technol. 67, 123–146 (1989).
[CrossRef]

M. Namazian, J. Kelly, R. W. Schefer, S. C. Johnston, M. B. Long, “Nonpremixed bluff-body burner flow and flame imaging study,” Exp. Fluids 8, 216–228 (1989).
[CrossRef]

Schmitt, R. L.

Solan, A.

S. Abramovich, A. Solan, “The initial development of a submerged laminar round jet,” J. Fluid Mech. 53, 791–801 (1973).
[CrossRef]

Stårner, S. H.

van Cruyningen, I.

P. H. Paul, I. van Cruyningen, R. K. Hanson, G. Kychakoff, “High resolution digital flowfield imaging of jets,” Exp. Fluids 9, 241–251 (1990).
[CrossRef]

Webber, B. F.

B. F. Webber, M. B. Long, R. K. Chang, “Two dimensional average concentration measurements in a jet flow by Raman scattering,” Appl. Phys. Lett. 35, 119–121 (1979).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. F. Webber, M. B. Long, R. K. Chang, “Two dimensional average concentration measurements in a jet flow by Raman scattering,” Appl. Phys. Lett. 35, 119–121 (1979).
[CrossRef]

Appl. Sci. Res.

S. I. Pai, T. Hsieh, “Numerical solution of laminar jet mixing with and without free stream,” Appl. Sci. Res. 27, 39–62 (1972).
[CrossRef]

Combust. Sci. Technol.

R. W. Schefer, M. Namazian, J. Kelly, “Combustion of turbulent-jet and bluff-body stabilized flames,” Combust. Sci. Technol. 67, 123–146 (1989).
[CrossRef]

Exp. Fluids

P. H. Paul, I. van Cruyningen, R. K. Hanson, G. Kychakoff, “High resolution digital flowfield imaging of jets,” Exp. Fluids 9, 241–251 (1990).
[CrossRef]

M. Namazian, J. Kelly, R. W. Schefer, S. C. Johnston, M. B. Long, “Nonpremixed bluff-body burner flow and flame imaging study,” Exp. Fluids 8, 216–228 (1989).
[CrossRef]

J. Fluid Mech.

S. Abramovich, A. Solan, “The initial development of a submerged laminar round jet,” J. Fluid Mech. 53, 791–801 (1973).
[CrossRef]

Opt. Eng.

J. R. Janesick, T. Elliot, S. Collins, M. M. Blouke, J. Freeman, “Scientific charge coupled devices,” Opt. Eng. 26, 692–714 (1987).

Opt. Lett.

Other

J. C. McDaniel, “Investigation of laser induced fluorescence for the measurement of density in compressible flows,” Ph.D. dissertation (Department of Astronautics and Aeronautics, Stanford University, Stanford, California, 1983).

J. C. Russ, The Image Processing Handbook (CRC Press, Boca Raton, Fla., 1994), p. 168.

W. K. Pratt, Digital Image Processing (Wiley, New York, 1978).

D. C. Kyritsis, “Quantitative, single-shot, two-dimensional spontaneous Raman measurements for fluid mechanics and engine applications,” Ph.D. dissertation (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1998).

V. Magi, “REC-87. A new 3-D code for flows, sprays and combustion in reciprocating and rotary engines,” (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1987).

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

M. B. Long, “Multidimensional imaging in combusting flows by Lorenz-Mie, Rayleigh and Raman scattering,” in Instrumentation for Flows with Combustion, A. M. K. P. Taylor, ed. (Academic, London, 1993), p. 467.

D. L. Hartley, “Raman gas mixing measurements and Ramanography,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1973), p. 311.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental setup for 2-D Raman measurements in a laminar methane jet: a, holographic notch filter; b, glass filters; c, interference filter.

Fig. 2
Fig. 2

Computational domain and grid for the axisymmetric computation of the laminar methane jet in nitrogen atmosphere.

Fig. 3
Fig. 3

Comparison of the computed normalized methane number density (■) and the measured normalized iodine fluorescence intensity (○) 2.4 diameters downstream of the tube exit.

Fig. 4
Fig. 4

Raman image acquired with standard image processing techniques.

Fig. 5
Fig. 5

Noisy pattern along an image line superimposed to the camera response to uniform object illumination and its Fourier-transformed correlogram.

Fig. 6
Fig. 6

Measured noise rms as a function of signal intensity. The straight line represents the square-root behavior predicted by photon statistics.

Fig. 7
Fig. 7

CTF versus spatial frequency in the object plane.

Fig. 8
Fig. 8

Filter setting for image splitting and simultaneous background acquisition. All numbers correspond to order-of-magnitude estimates of the corresponding signal strength in photons per pixel.

Fig. 9
Fig. 9

Normalized methane concentration distribution in a laminar methane jet measured with 2-D Raman.

Fig. 10
Fig. 10

Comparison of computational and 2-D Raman results at 2.4 diameters downstream of the tube exit. Experiments I and II are the measurements of methane concentration taken on the left-hand side and on the right-hand side of the jet, respectively, as viewed from the camera.

Fig. 11
Fig. 11

Comparison of computational and 2-D Raman results at 3.6 diameters downstream of the tube exit. Experiments I and II are measurements of methane concentration taken on the left side and on the right side of the jet, respectively, as viewed from the camera.

Fig. 12
Fig. 12

Comparison of computational and 2-D Raman results at 5.2 diameters downstream of the tube exit. Experiments I and II are measurements of methane concentration taken on the left side and on the right side of the jet, respectively, as viewed from the camera.

Fig. 13
Fig. 13

Normalized methane concentration distribution acquired with use of an image splitter.

Fig. 14
Fig. 14

Comparison of computed and 2-D Raman results at 2.4 and 3.6 diameters downstream of the tube exit. The experimental data were acquired by use of an image splitter allowing for simultaneous acquisition of the background. Experiments I and II are measurements taken on the left side and on the right side of the jet, respectively, as viewed from the camera.

Fig. 15
Fig. 15

Effect of laser thickness on the spatial resolution of the 2-D laminar jet imaging.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i=1640 Sriri-raxis=0  raxis=i=1640 riSrii=1640 Sri.
DR=Smax-SminNrms,

Metrics