Abstract

We evaluate the performance of various commercially available InGaAs/InP avalanche photodiodes for photon counting in the infrared at temperatures that can be reached by Peltier cooling. We find that dark count rates are high, and this can partially saturate devices before optimum performance is achieved. At low temperatures the dark count rate rises because of a strong contribution from correlated afterpulses. We discuss ways of suppressing these afterpulses for different photon-counting applications.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. I. Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
    [CrossRef]
  2. R. G. W. Brown, R. Jones, J. G. Rarity, K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. II. Active quenching,” Appl. Opt. 26, 2383–2388 (1987).
    [CrossRef] [PubMed]
  3. Data sheet on SPCM-AQ photon counting module, EG&G, Optoelectronics Division, Vaudreuil, Canada.
  4. P. C. M. Owens, J. G. Rarity, P. R. Tapster, P. D. Townsend, “Photon counting with passively quenched germanium avalanche diodes,” Appl. Opt. 33, 6895–6901 (1994).
    [CrossRef] [PubMed]
  5. B. T. Levine, C. G. Bethea, J. C. Campbell, “Room temperature 1.3 µm optical time domain reflectrometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
    [CrossRef]
  6. J. G. Rarity, P. R. Tapster, “Technology for quantum cryptography—secure communication with light,” Def. Sci. J. 1, 388–395 (1996).
  7. A. Lacaita, F. Zappa, S. Cova, P. Lovati, “Single photon detection beyond 1 µm: performance of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986–2996 (1996).
    [CrossRef] [PubMed]
  8. G. Ribordy, J.-D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalance photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
    [CrossRef]
  9. A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).
  10. P. A. Hiskett, G. S. Buller, J. M. Smith, A. Y. Loudon, I. Gontijo, A. C. Walker, P. D. Townsend, M. J. Robertson, “Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 µm,” Appl. Opt. 39, 6818–6829 (2000).
    [CrossRef]
  11. A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
    [CrossRef]
  12. G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated Plug and play quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
    [CrossRef]
  13. M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
    [CrossRef]

2000 (1)

1999 (2)

A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

1998 (2)

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated Plug and play quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

G. Ribordy, J.-D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalance photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

1997 (1)

A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

1996 (2)

J. G. Rarity, P. R. Tapster, “Technology for quantum cryptography—secure communication with light,” Def. Sci. J. 1, 388–395 (1996).

A. Lacaita, F. Zappa, S. Cova, P. Lovati, “Single photon detection beyond 1 µm: performance of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986–2996 (1996).
[CrossRef] [PubMed]

1994 (1)

1987 (1)

1986 (1)

1985 (1)

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room temperature 1.3 µm optical time domain reflectrometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Bethea, C. G.

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room temperature 1.3 µm optical time domain reflectrometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Bourennane, M.

A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

Brown, R. G. W.

Buller, G. S.

Campbell, J. C.

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room temperature 1.3 µm optical time domain reflectrometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Cova, S.

Gautier, J.-D.

A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).

G. Ribordy, J.-D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalance photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated Plug and play quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

Gibson, F.

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

Gisin, N.

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated Plug and play quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

G. Ribordy, J.-D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalance photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Gontijo, I.

Guinnard, O.

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated Plug and play quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

Hening, A.

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

Hertzog, T.

A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Hiskett, P. A.

Huttner, B.

A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Jones, R.

Jonsson, P.

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

Karlsson, A.

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).

Lacaita, A.

Levine, B. T.

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room temperature 1.3 µm optical time domain reflectrometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Ljunggren, D.

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

Loudon, A. Y.

Lovati, P.

Muller, A.

A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Owens, P. C. M.

Rarity, J. G.

Ribordy, G.

A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).

G. Ribordy, J.-D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalance photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated Plug and play quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

Ridley, K. D.

Robertson, M. J.

Smith, J. M.

Sundberg, E.

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

Tapster, P. R.

A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).

J. G. Rarity, P. R. Tapster, “Technology for quantum cryptography—secure communication with light,” Def. Sci. J. 1, 388–395 (1996).

P. C. M. Owens, J. G. Rarity, P. R. Tapster, P. D. Townsend, “Photon counting with passively quenched germanium avalanche diodes,” Appl. Opt. 33, 6895–6901 (1994).
[CrossRef] [PubMed]

Tittel, W.

A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Townsend, P. D.

Tsegaye, T.

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

Walker, A. C.

Zappa, F.

Zbinden, H.

A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).

G. Ribordy, J.-D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalance photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated Plug and play quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (2)

A. Muller, T. Hertzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “Plug and play systems for quantum cryoptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room temperature 1.3 µm optical time domain reflectrometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Def. Sci. J. (1)

J. G. Rarity, P. R. Tapster, “Technology for quantum cryptography—secure communication with light,” Def. Sci. J. 1, 388–395 (1996).

Electron. Lett. (1)

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated Plug and play quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

IEEE Circuits Devices Mag. (1)

A. Karlsson, M. Bourennane, G. Ribordy, J.-D. Gautier, H. Zbinden, J. G. Rarity, P. R. Tapster, “A single photon counter for long-haul telecom,” IEEE Circuits Devices Mag. 15(6), 35–40 (1999).

Opt. Exp. (1)

M. Bourennane, F. Gibson, A. Hening, A. Karlsson, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long wavelength (1550 nm) plug and play quantum cryptography systems,” Opt. Exp. 10, 383–387 (1999).
[CrossRef]

Other (1)

Data sheet on SPCM-AQ photon counting module, EG&G, Optoelectronics Division, Vaudreuil, Canada.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the apparatus used to characterize the InGaAs APD’s. A pulsed diode laser is attenuated in a calibrated neutral density (ND) filter, and light is coupled to the device through a single-mode fiber. The device sits in a home-built cryostat cooled by solid CO2. A passive quench resistor of 56 kΩ is connected in series with the devices, and breakdown pulses are measured across the 50-Ω input resistance of a ×200 pulse amplifier.

Fig. 2
Fig. 2

Dark counts as a function of voltage above breakdown for the four devices studied here. Note the striking difference between the two EG&G device types.

Fig. 3
Fig. 3

Dark counts at fixed voltage above breakdown as a function of temperature. All the devices studied here show a marked minimum in their dark count at around 200–220 K. The exception is the NDL5501 device studied previously.6

Fig. 4
Fig. 4

Quantum efficiency as a function of dark count for the range of devices studied and selected temperatures close to 220 K. We add, for comparison, data from previous studies of the NDL5501 series InGaAs devices at 175 K (Ref. 6) and NDL5103 Ge devices at 77 K.4 The solid line marks NEP of ∼10-15 WHz-1/2 assuming optical efficiency η o ∼ 0.75.

Fig. 5
Fig. 5

Afterpulse probability per 100 ns {[g (2)(τ) - 1]〈n〉} plotted as a function of time delay for various temperatures for the NDL5551 and EG&G30733 devices at 0.5 V above breakdown.

Fig. 6
Fig. 6

Total afterpulse probability for various devices and temperatures. We plot the afterpulsing versus the dark count rate to show that the measured afterpulse probability is distorted by dead-time effects above count rates of 500 kHz.

Fig. 7
Fig. 7

Afterpulse probability as a function of efficiency at temperatures close to 220 K, suitable for Peltier cooling.

Fig. 8
Fig. 8

Histogram of the time interval between the detected photopulse and the laser timing pulse for device NDL5551 at 223 K and various voltages above breakdown. Note that the laser pulse is used as the stop pulse to improve the efficiency of the time digitization process. This results in the leading edge of the pulse being on the right-hand side of the plot.

Fig. 9
Fig. 9

Measured full width at half-maximum of the timing jitter for the three devices plotted as a function of photoelectron detection efficiency.

Fig. 10
Fig. 10

Photoelectron detection efficiency plotted against dark counts corrected for measured afterpulsing. Clearly the EG&G device shows improved performance better than 10-15 WHz1/2.

Fig. 11
Fig. 11

Integrated afterpulse probability for various total times showing significant contribution to afterpulsing from long-lived traps.

Fig. 12
Fig. 12

Afterpulse probability per 100 ns plotted logarithmically showing long-lived polynomial tails to the afterpulse distribution. All measurements were made at 0.5 V beyond breakdown.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

NEP=2hνND1/2ηWHz1/2,
ηPD=NL-NDeTIPD.
g2τ=nTtnTt+τnT2,
g2τ=pTcτpT.
g2τ=1+pTapτnT.
Pap=1T  g2τ-1nTdτ.
NL/D=11+Pap NL/Dm,
NL/D=11-NL/DmTd NL/Dm.
Ns=ηIshν.
ΔNs=±TNs+Nd1/2,
NEP=2hνT1/2Nd1/2η.

Metrics