Abstract

Using simple ray-tracing simulations, the cause of the rare Parry arc has been linked historically to horizontally oriented columns that display the peculiar ability to fall with a pair of prism faces closely parallel to the ground. Although we understand the aerodynamic forces that orient the long-column axis in the horizontal plane, which gives rise to the relatively common tangent arcs of the 22° halo, the mechanism leading to the Parry crystal orientation has never been resolved adequately. On 16 November 1998, at the University of Utah Facility for Atmospheric Remote Sensing, we studied a cirrus cloud producing a classic upper Parry arc using polarization lidar and an aircraft with a new high-resolution ice crystal imaging probe. Scanning lidar data, which reveal extremely high linear depolarization ratios δ a few degrees off the zenith direction, are simulated with ray-tracing theory to determine the ice crystal properties that reproduce this previously unknown behavior. It is found that a limited range of thick-plate crystal axis (length-to-diameter) ratios from ∼0.75 to 0.93 generates a maximum δ ≈ 2.0–5.0 for vertically polarized 0.532-µm light when the lidar is tilted 1°–2° off the zenith. Halo simulations based on these crystal properties also generate a Parry arc. However, although such particles are abundant in the in situ data in the height interval indicated by the lidar, one still has to invoke an aerodynamic stabilization force to produce properly oriented particles. Although we speculate on a possible mechanism, further research is needed into this new explanation for the Parry arc.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. R. Tricker, Ice Crystal Haloes (Atmospheric Optics Technical Group of the Optical Society of America, Washington, D.C., 1979), p. 30.
  2. R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, New York, 1980).
  3. W. E. Parry, Journal of a Voyage for the Discovery of a Northwest Passage (1821), Reprint ed. (Greenwood, New York, 1968).
  4. C. S. Hastings, “A general theory of halos,” Mon. Weather Rev. 48, 322–330 (1920).
    [CrossRef]
  5. A. Wegener, Theorie der Haupthalos (Archiv der Duetschen Seewarte 43, Hamburg, Germany, 1926).
  6. P. Putnins, “Der bogen von Parry und andere beruhrungsbogen des gewohnlichen ringes,” Meteorol. Z. 51, 321–331 (1934).
  7. K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorl. Soc. Jpn. 58, 422–429 (1980).
  8. K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorl. Soc. 78, 1885–1903 (1997).
    [CrossRef]
  9. K. Sassen, “Lidar backscatter depolarization technique for cloud and aerosol research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. L. Mischenko, J. W. Hovenier, L. D. Travis, eds. (Academic, New York, 2000), pp. 393–416.
    [CrossRef]
  10. S. Benson, “Lidar depolarization study to infer cirrus cloud microphysics,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1999).
  11. K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
    [CrossRef]
  12. K. Sassen, “Cirrus clouds and haloes: a closer look,” Opt. Photon. News 10, 39–42 (1999).
    [CrossRef]
  13. W. Tape, Atmospheric Halos, Vol. 64 of Antarctic Research Series (American Geophysics Union, Washington, D.C., 1994).
    [CrossRef]
  14. Y. Takano, K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed from ray optics,” Appl. Opt. 24, 3254–3263 (1985).
    [CrossRef] [PubMed]
  15. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [CrossRef]
  16. Y. Takano, K. N. Liou, “Halo phenomena modified by multiple scattering,” J. Opt. Soc. Am. A 7, 885–889 (1990).
    [CrossRef]
  17. R. P. Lawson, B. A. Baker, C. G. Schmitt, “Microphysics of Arctic clouds observed during FIRE/ACE,” J. Geophys. Res. (to be published).
  18. K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 33, 4590–4601 (1994).
    [CrossRef] [PubMed]
  19. K. Sassen, W. P. Arnott, J. M. Barnett, S. Aulenbach, “Can cirrus clouds produce glories?,” Appl. Opt. 37, 1427–1433 (1998).
    [CrossRef]
  20. W. G. Finnegan, R. C. Pitter, “Ion-induced charge separations in growing single ice crystals: effects on growth and interaction processes,” J. Colloid Interface Sci. 189, 322–327 (1997).
    [CrossRef]

1999 (1)

K. Sassen, “Cirrus clouds and haloes: a closer look,” Opt. Photon. News 10, 39–42 (1999).
[CrossRef]

1998 (1)

1997 (2)

W. G. Finnegan, R. C. Pitter, “Ion-induced charge separations in growing single ice crystals: effects on growth and interaction processes,” J. Colloid Interface Sci. 189, 322–327 (1997).
[CrossRef]

K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorl. Soc. 78, 1885–1903 (1997).
[CrossRef]

1994 (2)

1990 (1)

1989 (1)

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

1985 (1)

1980 (1)

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorl. Soc. Jpn. 58, 422–429 (1980).

1934 (1)

P. Putnins, “Der bogen von Parry und andere beruhrungsbogen des gewohnlichen ringes,” Meteorol. Z. 51, 321–331 (1934).

1920 (1)

C. S. Hastings, “A general theory of halos,” Mon. Weather Rev. 48, 322–330 (1920).
[CrossRef]

Arnott, W. P.

Aulenbach, S.

Baker, B. A.

R. P. Lawson, B. A. Baker, C. G. Schmitt, “Microphysics of Arctic clouds observed during FIRE/ACE,” J. Geophys. Res. (to be published).

Barnett, J. M.

Benson, S.

S. Benson, “Lidar depolarization study to infer cirrus cloud microphysics,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1999).

Finnegan, W. G.

W. G. Finnegan, R. C. Pitter, “Ion-induced charge separations in growing single ice crystals: effects on growth and interaction processes,” J. Colloid Interface Sci. 189, 322–327 (1997).
[CrossRef]

Greenler, R.

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, New York, 1980).

Hastings, C. S.

C. S. Hastings, “A general theory of halos,” Mon. Weather Rev. 48, 322–330 (1920).
[CrossRef]

Heymsfield, A. J.

Jayaweera, K.

Knight, N. C.

Lawson, R. P.

R. P. Lawson, B. A. Baker, C. G. Schmitt, “Microphysics of Arctic clouds observed during FIRE/ACE,” J. Geophys. Res. (to be published).

Liou, K. N.

Y. Takano, K. N. Liou, “Halo phenomena modified by multiple scattering,” J. Opt. Soc. Am. A 7, 885–889 (1990).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Parry, W. E.

W. E. Parry, Journal of a Voyage for the Discovery of a Northwest Passage (1821), Reprint ed. (Greenwood, New York, 1968).

Pitter, R. C.

W. G. Finnegan, R. C. Pitter, “Ion-induced charge separations in growing single ice crystals: effects on growth and interaction processes,” J. Colloid Interface Sci. 189, 322–327 (1997).
[CrossRef]

Putnins, P.

P. Putnins, “Der bogen von Parry und andere beruhrungsbogen des gewohnlichen ringes,” Meteorol. Z. 51, 321–331 (1934).

Sassen, K.

K. Sassen, “Cirrus clouds and haloes: a closer look,” Opt. Photon. News 10, 39–42 (1999).
[CrossRef]

K. Sassen, W. P. Arnott, J. M. Barnett, S. Aulenbach, “Can cirrus clouds produce glories?,” Appl. Opt. 37, 1427–1433 (1998).
[CrossRef]

K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorl. Soc. 78, 1885–1903 (1997).
[CrossRef]

K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
[CrossRef]

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 33, 4590–4601 (1994).
[CrossRef] [PubMed]

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorl. Soc. Jpn. 58, 422–429 (1980).

K. Sassen, “Lidar backscatter depolarization technique for cloud and aerosol research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. L. Mischenko, J. W. Hovenier, L. D. Travis, eds. (Academic, New York, 2000), pp. 393–416.
[CrossRef]

Schmitt, C. G.

R. P. Lawson, B. A. Baker, C. G. Schmitt, “Microphysics of Arctic clouds observed during FIRE/ACE,” J. Geophys. Res. (to be published).

Takano, Y.

Tape, W.

W. Tape, Atmospheric Halos, Vol. 64 of Antarctic Research Series (American Geophysics Union, Washington, D.C., 1994).
[CrossRef]

Tricker, R. A. R.

R. A. R. Tricker, Ice Crystal Haloes (Atmospheric Optics Technical Group of the Optical Society of America, Washington, D.C., 1979), p. 30.

Wegener, A.

A. Wegener, Theorie der Haupthalos (Archiv der Duetschen Seewarte 43, Hamburg, Germany, 1926).

Appl. Opt. (3)

Bull. Am. Meteorl. Soc. (1)

K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorl. Soc. 78, 1885–1903 (1997).
[CrossRef]

J. Atmos. Sci. (1)

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

J. Colloid Interface Sci. (1)

W. G. Finnegan, R. C. Pitter, “Ion-induced charge separations in growing single ice crystals: effects on growth and interaction processes,” J. Colloid Interface Sci. 189, 322–327 (1997).
[CrossRef]

J. Meteorl. Soc. Jpn. (1)

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorl. Soc. Jpn. 58, 422–429 (1980).

J. Opt. Soc. Am. A (1)

Meteorol. Z. (1)

P. Putnins, “Der bogen von Parry und andere beruhrungsbogen des gewohnlichen ringes,” Meteorol. Z. 51, 321–331 (1934).

Mon. Weather Rev. (1)

C. S. Hastings, “A general theory of halos,” Mon. Weather Rev. 48, 322–330 (1920).
[CrossRef]

Opt. Photon. News (1)

K. Sassen, “Cirrus clouds and haloes: a closer look,” Opt. Photon. News 10, 39–42 (1999).
[CrossRef]

Proc. IEEE (1)

K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
[CrossRef]

Other (8)

W. Tape, Atmospheric Halos, Vol. 64 of Antarctic Research Series (American Geophysics Union, Washington, D.C., 1994).
[CrossRef]

R. P. Lawson, B. A. Baker, C. G. Schmitt, “Microphysics of Arctic clouds observed during FIRE/ACE,” J. Geophys. Res. (to be published).

A. Wegener, Theorie der Haupthalos (Archiv der Duetschen Seewarte 43, Hamburg, Germany, 1926).

R. A. R. Tricker, Ice Crystal Haloes (Atmospheric Optics Technical Group of the Optical Society of America, Washington, D.C., 1979), p. 30.

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, New York, 1980).

W. E. Parry, Journal of a Voyage for the Discovery of a Northwest Passage (1821), Reprint ed. (Greenwood, New York, 1968).

K. Sassen, “Lidar backscatter depolarization technique for cloud and aerosol research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. L. Mischenko, J. W. Hovenier, L. D. Travis, eds. (Academic, New York, 2000), pp. 393–416.
[CrossRef]

S. Benson, “Lidar depolarization study to infer cirrus cloud microphysics,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Height versus time displays of CPL (0.694-µm) relative backscattering (middle, based on a logarithmic gray scale) with local temperature profile and linear depolarization ratios (with the color δ scale on the right-hand side) for the cirrus studied on 16 November 1998. The altitude of the supporting Lear jet mission in the vicinity of FARS is superimposed over the lidar data. Representative fish-eye photographs obtained at the indicated date and times in UTC are shown at the top. MSL, mean sea level.

Fig. 2
Fig. 2

Comparison of PDL (0.532-µm) ±10° zenith elevation angle scans begun at the indicated times (in UTC) in terms of δ values (top) and relative returned energy obtained at a 1.0°-s-1 scan rate. The scan in b was obtained when the Parry arc was at its maximum brilliance. Note that the slight asymmetry in the δ patterns is probably the result of a small error in the level of the truck-mounted PDL system. MSL, mean sea level.

Fig. 3
Fig. 3

Photograph taken with a 24-mm wide-angle lens at the indicated time of the vivid Parry arc and tangent arc combination plus the circumzenith arc. Note the weak colorization on the inner Parry arc (middle arc).

Fig. 4
Fig. 4

Traditional view of the ray path responsible for the Parry arc shown in solar scattering geometry (after Ref. 13). The long-solid-column crystal must fall with a pair of prism faces strictly parallel to the ground.

Fig. 5
Fig. 5

Schematic views of the predicted ray path through a L/2a = 0.833 Parry-oriented thick-plate crystal responsible for the strongly depolarized backscattering at α = 2°, shown in terms of the lidar scattering geometry. The dots mark the locations of reflections and internal refractions off the basal and prism faces and T denotes total internal reflection.

Fig. 6
Fig. 6

Plots of (a) δ v values and (b) relative lidar backscattering M as a function of the off-zenith scanning angle α and the identified thick-plate axis ratios L/2a (see inserted key in (b). δ v values for L/2a = 1.0 are too low in (a) to be discerned in the figure.

Fig. 7
Fig. 7

Zenith-centered all-sky simulation of the optical phenomena generated by Parry-oriented thick-plate crystals (L/2a = 0.833) for a solar elevation angle of 17° and a 0.532-µm wavelength, where ■, +, and * represent the log 0, 1, and 2 relative scattering intensity, respectively. The Sun position is indicated by the open circle near the bottom, and the position of the 22° halo is indicated by the dashed circle. The inserted abbreviations for the observed arcs are defined in the text.

Fig. 8
Fig. 8

Selected ice crystal images from the in situ cloud particle laser-imaging probe showing the predicted shapes collected between 2156:07 and 2159:53 during a spiral descent from 8.0 to 9.0 km, following the lidar scan and optics photograph of Figs. 2(b) and 3. The top shows the scale for a 200-µm particle. Note the tendency for the crystal axis ratios to decrease with descent, from top left to bottom right.

Metrics