Abstract

Sun-stimulated chlorophyll a fluorescence has been measured in situ, within the upward and downward light fields, in oceanic waters with chlorophyll concentrations of 0.04–3 mg m-3. We combined these signals with phytoplankton absorption spectra to derive the fluorescence quantum yield, ϕ (number of photons emitted by fluorescence/number of absorbed photons). ϕ was derived separately from hyperspectral (upward and downward) irradiance measurements (with a LI-COR Instruments spectroradiometer) and from nadir radiance near 683 nm (with a Biospherical Instruments profiler). The contribution of inelastic Raman scattering to the signal in the red band was assessed and subtracted. Raman-corrected ϕ values derived from the two instruments compared well. Vertical ϕ profiles were strongly structured, with maximal (5–6%) values at depth, whereas ϕ was ≅1% in near-surface waters (measurements made approximately at solar noon). These near-surface values are needed for interpretation of remotely sensed fluorescence signals. This optical study shows that the fluorescence yield of algae in their natural environment can be accurately derived in a nonintrusive way with available instrumentation and adequate protocols.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription