Abstract

We develop a theory of the crystallization dynamics of Ge2Sb2.3Te5 thin films that shows good qualitative agreement with experimental reflectivity results from a two-laser static tester. The theory is adapted from the nucleation theory of liquid droplets from supersaturated vapor and elucidates the physics underlying the amorphous-to-crystalline phase transformation under short-pulse excitation. In particular, the theory provides a physical picture in which crystalline islands, or basic embryos, are thermally activated in the amorphous material and subsequently grow as stable nuclei are formed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinlib, J. deNeufville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
    [CrossRef]
  2. I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
    [CrossRef]
  3. H. Yasuoka, M. Ojjima, M. Terao, T. Nishida, “Novel 1-beam-overwriting method for phase-change erasable disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 171–176 (1987).
  4. D. J. Gravesteijn, “Materials developments for write-once and erasable phase-change optical recording,” Appl. Opt. 27, 736–738 (1988).
    [CrossRef] [PubMed]
  5. H. Minemura, H. Andoh, N. Tsuboi, Y. Maeda, Y. Sato, “Three-dimensional analysis of overwritable phase-change optical disks,” J. Appl. Phys. 67, 2731–2735 (1990).
    [CrossRef]
  6. Y. Nakayoshi, Y. Kanemitsu, Y. Masumoto, Y. Maeda, “Dynamics of rapid phase transformations in amorphous GeTe induced by nanosecond laser pulses,” Jpn. J. Appl. Phys. Part 1 31, 471–475 (1992).
    [CrossRef]
  7. T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, “High sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S.-T. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
    [CrossRef]
  8. Q. M. Lu, M. Libera, “Microstructural measurements of amorphous GeTe crystallization by hot-stage microscopy,” J. Appl. Phys. 77, 517–521 (1995).
    [CrossRef]
  9. Z. L. Mao, H. Chen, A.-L. Jung, “The structure and crystallization characteristics of phase-change optical disk material Ge1Sb2Te4,” J. Appl. Phys. 78, 2338–2342 (1995).
    [CrossRef]
  10. J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, B. A. J. Jacobs, “Laser-induced crystallization phenomena in Ge-Te based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78, 4906–4917 (1995).
    [CrossRef]
  11. C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
    [CrossRef]
  12. P. K. Khulbe, E. W. Wright, M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys. 88, 3926–3933 (2000).
    [CrossRef]
  13. K. F. Kelton, A. L. Greer, C. V. Thompson, “Transient nucleation in condensed systems,” J. Chem. Phys. 79, 6261–6276 (1983).
    [CrossRef]
  14. temprofile is a product of MM Research, Inc., Tucson, Arizona.
  15. J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955), Chap. 7.
  16. J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Thermodynamic aspects,” Am. J. Phys. 30, 870–877 (1962).
    [CrossRef]
  17. J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Kinetic aspects,” Am. J. Phys. 31, 31–41 (1963).
    [CrossRef]
  18. See, for example, S. W. Koch, Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems (Springer-Verlag, Berlin, 1984), pp. 18–19.
  19. See, for example, D. Stroud, Van E. Wood, “Decoupling approximation for the nonlinear-optical response of composite media,” J. Opt. Soc. Am. B 6, 778–786 (1989).
  20. See, for example, H. A. McLeod, Thin Film Optical Filters (Macmillan, New York, 1986).
  21. The maximum cluster size used affects the numerical results qualitatively. Taking the basic embryo unit size as 1 nm yields a maximum spherical cluster in a 25-nm-thick sample of gmax ≈ 123. This is, however, an overestimate, and here we took gmax = 100.

2000 (1)

P. K. Khulbe, E. W. Wright, M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys. 88, 3926–3933 (2000).
[CrossRef]

1998 (1)

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

1997 (1)

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

1995 (3)

Q. M. Lu, M. Libera, “Microstructural measurements of amorphous GeTe crystallization by hot-stage microscopy,” J. Appl. Phys. 77, 517–521 (1995).
[CrossRef]

Z. L. Mao, H. Chen, A.-L. Jung, “The structure and crystallization characteristics of phase-change optical disk material Ge1Sb2Te4,” J. Appl. Phys. 78, 2338–2342 (1995).
[CrossRef]

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, B. A. J. Jacobs, “Laser-induced crystallization phenomena in Ge-Te based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78, 4906–4917 (1995).
[CrossRef]

1992 (1)

Y. Nakayoshi, Y. Kanemitsu, Y. Masumoto, Y. Maeda, “Dynamics of rapid phase transformations in amorphous GeTe induced by nanosecond laser pulses,” Jpn. J. Appl. Phys. Part 1 31, 471–475 (1992).
[CrossRef]

1990 (1)

H. Minemura, H. Andoh, N. Tsuboi, Y. Maeda, Y. Sato, “Three-dimensional analysis of overwritable phase-change optical disks,” J. Appl. Phys. 67, 2731–2735 (1990).
[CrossRef]

1989 (1)

1988 (1)

1987 (1)

H. Yasuoka, M. Ojjima, M. Terao, T. Nishida, “Novel 1-beam-overwriting method for phase-change erasable disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 171–176 (1987).

1983 (1)

K. F. Kelton, A. L. Greer, C. V. Thompson, “Transient nucleation in condensed systems,” J. Chem. Phys. 79, 6261–6276 (1983).
[CrossRef]

1971 (1)

J. Feinlib, J. deNeufville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

1963 (1)

J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Kinetic aspects,” Am. J. Phys. 31, 31–41 (1963).
[CrossRef]

1962 (1)

J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Thermodynamic aspects,” Am. J. Phys. 30, 870–877 (1962).
[CrossRef]

Akahira, N.

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

Akiyama, T.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, “High sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S.-T. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Andoh, H.

H. Minemura, H. Andoh, N. Tsuboi, Y. Maeda, Y. Sato, “Three-dimensional analysis of overwritable phase-change optical disks,” J. Appl. Phys. 67, 2731–2735 (1990).
[CrossRef]

Chen, H.

Z. L. Mao, H. Chen, A.-L. Jung, “The structure and crystallization characteristics of phase-change optical disk material Ge1Sb2Te4,” J. Appl. Phys. 78, 2338–2342 (1995).
[CrossRef]

Cheng, L.

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

Coombs, J. H.

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, B. A. J. Jacobs, “Laser-induced crystallization phenomena in Ge-Te based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78, 4906–4917 (1995).
[CrossRef]

deNeufville, J.

J. Feinlib, J. deNeufville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Feinlib, J.

J. Feinlib, J. deNeufville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Frenkel, J.

J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955), Chap. 7.

Gravesteijn, D. J.

Greer, A. L.

K. F. Kelton, A. L. Greer, C. V. Thompson, “Transient nucleation in condensed systems,” J. Chem. Phys. 79, 6261–6276 (1983).
[CrossRef]

Isomura, H.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, “High sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S.-T. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Jacobs, B. A. J.

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, B. A. J. Jacobs, “Laser-induced crystallization phenomena in Ge-Te based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78, 4906–4917 (1995).
[CrossRef]

Jongenelis, A. P. J. M.

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, B. A. J. Jacobs, “Laser-induced crystallization phenomena in Ge-Te based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78, 4906–4917 (1995).
[CrossRef]

Jung, A.-L.

Z. L. Mao, H. Chen, A.-L. Jung, “The structure and crystallization characteristics of phase-change optical disk material Ge1Sb2Te4,” J. Appl. Phys. 78, 2338–2342 (1995).
[CrossRef]

Kanemitsu, Y.

Y. Nakayoshi, Y. Kanemitsu, Y. Masumoto, Y. Maeda, “Dynamics of rapid phase transformations in amorphous GeTe induced by nanosecond laser pulses,” Jpn. J. Appl. Phys. Part 1 31, 471–475 (1992).
[CrossRef]

Kelton, K. F.

K. F. Kelton, A. L. Greer, C. V. Thompson, “Transient nucleation in condensed systems,” J. Chem. Phys. 79, 6261–6276 (1983).
[CrossRef]

Khulbe, P. K.

P. K. Khulbe, E. W. Wright, M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys. 88, 3926–3933 (2000).
[CrossRef]

Koch, S. W.

See, for example, S. W. Koch, Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems (Springer-Verlag, Berlin, 1984), pp. 18–19.

Libera, M.

Q. M. Lu, M. Libera, “Microstructural measurements of amorphous GeTe crystallization by hot-stage microscopy,” J. Appl. Phys. 77, 517–521 (1995).
[CrossRef]

Lu, Q. M.

Q. M. Lu, M. Libera, “Microstructural measurements of amorphous GeTe crystallization by hot-stage microscopy,” J. Appl. Phys. 77, 517–521 (1995).
[CrossRef]

Maeda, Y.

Y. Nakayoshi, Y. Kanemitsu, Y. Masumoto, Y. Maeda, “Dynamics of rapid phase transformations in amorphous GeTe induced by nanosecond laser pulses,” Jpn. J. Appl. Phys. Part 1 31, 471–475 (1992).
[CrossRef]

H. Minemura, H. Andoh, N. Tsuboi, Y. Maeda, Y. Sato, “Three-dimensional analysis of overwritable phase-change optical disks,” J. Appl. Phys. 67, 2731–2735 (1990).
[CrossRef]

Mansuripur, M.

P. K. Khulbe, E. W. Wright, M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys. 88, 3926–3933 (2000).
[CrossRef]

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

Mao, Z. L.

Z. L. Mao, H. Chen, A.-L. Jung, “The structure and crystallization characteristics of phase-change optical disk material Ge1Sb2Te4,” J. Appl. Phys. 78, 2338–2342 (1995).
[CrossRef]

Masumoto, Y.

Y. Nakayoshi, Y. Kanemitsu, Y. Masumoto, Y. Maeda, “Dynamics of rapid phase transformations in amorphous GeTe induced by nanosecond laser pulses,” Jpn. J. Appl. Phys. Part 1 31, 471–475 (1992).
[CrossRef]

McDonald, J. E.

J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Kinetic aspects,” Am. J. Phys. 31, 31–41 (1963).
[CrossRef]

J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Thermodynamic aspects,” Am. J. Phys. 30, 870–877 (1962).
[CrossRef]

McLeod, H. A.

See, for example, H. A. McLeod, Thin Film Optical Filters (Macmillan, New York, 1986).

Minemura, H.

H. Minemura, H. Andoh, N. Tsuboi, Y. Maeda, Y. Sato, “Three-dimensional analysis of overwritable phase-change optical disks,” J. Appl. Phys. 67, 2731–2735 (1990).
[CrossRef]

Moss, S. C.

J. Feinlib, J. deNeufville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Nakayoshi, Y.

Y. Nakayoshi, Y. Kanemitsu, Y. Masumoto, Y. Maeda, “Dynamics of rapid phase transformations in amorphous GeTe induced by nanosecond laser pulses,” Jpn. J. Appl. Phys. Part 1 31, 471–475 (1992).
[CrossRef]

Nishida, T.

H. Yasuoka, M. Ojjima, M. Terao, T. Nishida, “Novel 1-beam-overwriting method for phase-change erasable disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 171–176 (1987).

Ohara, S.

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

Ohta, T.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, “High sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S.-T. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Ojjima, M.

H. Yasuoka, M. Ojjima, M. Terao, T. Nishida, “Novel 1-beam-overwriting method for phase-change erasable disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 171–176 (1987).

Ovshinsky, S. R.

J. Feinlib, J. deNeufville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Peng, C.

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

Sato, Y.

H. Minemura, H. Andoh, N. Tsuboi, Y. Maeda, Y. Sato, “Three-dimensional analysis of overwritable phase-change optical disks,” J. Appl. Phys. 67, 2731–2735 (1990).
[CrossRef]

Satoh, I.

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

Stroud, D.

Takenaga, M.

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

Terao, M.

H. Yasuoka, M. Ojjima, M. Terao, T. Nishida, “Novel 1-beam-overwriting method for phase-change erasable disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 171–176 (1987).

Thompson, C. V.

K. F. Kelton, A. L. Greer, C. V. Thompson, “Transient nucleation in condensed systems,” J. Chem. Phys. 79, 6261–6276 (1983).
[CrossRef]

Tsuboi, N.

H. Minemura, H. Andoh, N. Tsuboi, Y. Maeda, Y. Sato, “Three-dimensional analysis of overwritable phase-change optical disks,” J. Appl. Phys. 67, 2731–2735 (1990).
[CrossRef]

van Es-Spiekman, W.

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, B. A. J. Jacobs, “Laser-induced crystallization phenomena in Ge-Te based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78, 4906–4917 (1995).
[CrossRef]

Wood, Van E.

Wright, E. W.

P. K. Khulbe, E. W. Wright, M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys. 88, 3926–3933 (2000).
[CrossRef]

Yasuoka, H.

H. Yasuoka, M. Ojjima, M. Terao, T. Nishida, “Novel 1-beam-overwriting method for phase-change erasable disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 171–176 (1987).

Yoshioka, K.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, “High sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S.-T. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Am. J. Phys. (2)

J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Thermodynamic aspects,” Am. J. Phys. 30, 870–877 (1962).
[CrossRef]

J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Kinetic aspects,” Am. J. Phys. 31, 31–41 (1963).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Feinlib, J. deNeufville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

IEEE Trans. Magn. (1)

I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998).
[CrossRef]

J. Appl. Phys. (6)

H. Minemura, H. Andoh, N. Tsuboi, Y. Maeda, Y. Sato, “Three-dimensional analysis of overwritable phase-change optical disks,” J. Appl. Phys. 67, 2731–2735 (1990).
[CrossRef]

Q. M. Lu, M. Libera, “Microstructural measurements of amorphous GeTe crystallization by hot-stage microscopy,” J. Appl. Phys. 77, 517–521 (1995).
[CrossRef]

Z. L. Mao, H. Chen, A.-L. Jung, “The structure and crystallization characteristics of phase-change optical disk material Ge1Sb2Te4,” J. Appl. Phys. 78, 2338–2342 (1995).
[CrossRef]

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, B. A. J. Jacobs, “Laser-induced crystallization phenomena in Ge-Te based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78, 4906–4917 (1995).
[CrossRef]

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

P. K. Khulbe, E. W. Wright, M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys. 88, 3926–3933 (2000).
[CrossRef]

J. Chem. Phys. (1)

K. F. Kelton, A. L. Greer, C. V. Thompson, “Transient nucleation in condensed systems,” J. Chem. Phys. 79, 6261–6276 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 1 (1)

Y. Nakayoshi, Y. Kanemitsu, Y. Masumoto, Y. Maeda, “Dynamics of rapid phase transformations in amorphous GeTe induced by nanosecond laser pulses,” Jpn. J. Appl. Phys. Part 1 31, 471–475 (1992).
[CrossRef]

Jpn. J. Appl. Phys. Suppl. (1)

H. Yasuoka, M. Ojjima, M. Terao, T. Nishida, “Novel 1-beam-overwriting method for phase-change erasable disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 171–176 (1987).

Other (6)

See, for example, S. W. Koch, Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems (Springer-Verlag, Berlin, 1984), pp. 18–19.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, “High sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S.-T. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

temprofile is a product of MM Research, Inc., Tucson, Arizona.

J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955), Chap. 7.

See, for example, H. A. McLeod, Thin Film Optical Filters (Macmillan, New York, 1986).

The maximum cluster size used affects the numerical results qualitatively. Taking the basic embryo unit size as 1 nm yields a maximum spherical cluster in a 25-nm-thick sample of gmax ≈ 123. This is, however, an overestimate, and here we took gmax = 100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic model of the quadrilayer stack described in the text. The stack consists of a 77-nm-thick ZnS–SiO2 lower dielectric medium, a 25-nm-thick GST thin film, a 25-nm-thick upper dielectric medium, and a 100-nm-thick aluminum layer, as shown. The optical and thermal constants for the stack are tabulated in Ref. 12. The incident laser is focused through the 1.2-mm-thick polycarbonate substrate to a 0.7-µm spot (FWHM) on the GST.

Fig. 2
Fig. 2

On-axis temperature (relative to ambient) as a function of time for the quadrilayer stack of Fig. 1 with an incident power of 4.8 mW and a single rectangular pulse of 500-ns duration and two 250-ns pulses of the same power with a 100-ns gap and a 250-ns gap between the pulses. The horizontal line indicates the position of the temperature T p of the peak embryo generation rate according to Eq. (12).

Fig. 3
Fig. 3

(a) Experimental results showing reflectivity as a function of time for the quadrilayer stack shown in Fig. 1. The results given are for an incident power of 4.8 mW and a single rectangular pulse of 500-ns duration and two 250-ns pulses of the same power with a 100-ns gap and a 250-ns gap between the pulses. The experimental results are from the two-laser static tester described in detail in Ref. 12.

Fig. 4
Fig. 4

(a) Schematic of crystalline embryos formed throughout an amorphous GST film, showing basic embryos (g = 1) and also clusters (g > 1) formed by condensation. (b) Schematic of the growth and decay of embryo clusters of size g.

Fig. 5
Fig. 5

Reflectivity of the quadrilayer stack as a function of volume fill fraction p of a crystalline phase.

Fig. 6
Fig. 6

Theoretical results of the reflectivity as a function of time for an incident power of 4.8 mW and a single rectangular pulse of 500-ns duration and two 250-ns pulses of the same power with a 100-ns gap and a 250-ns gap between the pulses.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ΔF=4πr2σ-4πr33 ρRT lnS,
4πr33 ρ=mg,  4πr2σ=Ag2/3,
ΔFg=Ag2/3-kT lnSg,
N¯g=const. × exp-ΔFg/kT=const.×Sg exp-Ag2/3/kT.
N¯g=N¯1,satSg exp-Ag2/3-1/kT.
S=N¯1/N¯1,sat;
N1t=FT-I1,  Ngt=Ig-1-Ig,  g=2, 3  ,
Eg+1Cg=N¯gN¯g+1=1SexpAg+12/3-g2/3/kT,
Cg=Sg2/3, Eg=g2/3 expAg2/3-g-12/3/kTg2/3 exp2A/3kTg1/3,
S=N1/N¯1,sat1-p,
P1t=rt-J1-rtP1,  Pgt=Jg-1-Jg-rtPg,  g=2, 3  ,
nt=η exp-T-Tp2/ΔT2,
p=ac1+2p+2a1-pc1-p+a2+p,
p=NV¯=psatng¯,

Metrics