Abstract

We demonstrate experimentally a setup with which a two-dimensional picture can be transmitted from one plane to another at a signal request of the latter plane and the original picture continues to propagate unhindered along its original direction to the next stage. The setup makes use of photorefractive four-wave mixing and the self-pumped phase conjugation for its operation. Some means for increasing the contrast of the final transmitted image have been discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  2. W. Aicher, K. Haberger, “Influence of optical interconnects at the chip and board levels,” Opt. Eng. 38, 313–322 (1999).
    [CrossRef]
  3. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  4. C. S. Li, H. S. Stone, “Differential board/backplane optical interconnects for high speed digital systems. I. Theory,” J. Lightwave Technol. 11, 1234–1249 (1993).
  5. L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
    [CrossRef]
  6. P. Yeh, A. E. T. Chiou, J. Hong, “Optical interconnection using photorefractive dynamic holograms,” Appl. Opt. 27, 2093–2096 (1988).
    [CrossRef] [PubMed]
  7. H. J. Haumann, “Optoelectronic interconnection based on a light guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
    [CrossRef]
  8. M. Kato, H. Ito, T. Yamamoto, F. Yamagishi, T. Nakagami, “Multichannel optical switch that uses holograms,” Opt. Lett. 17, 769–771 (1992).
    [CrossRef] [PubMed]
  9. D. Wang, Z. Zhang, Y. Zhu, S. Zhang, P. Ye, “Observations on the coupling of two mutually incoherent beams without internal reflection in BaTiO3,” Opt. Commun. 73, 495–500 (1989).
    [CrossRef]
  10. S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Double phase conjugate mirror: analysis, demonstration, and applications,” Opt. Lett. 12, 114–116 (1987).
    [CrossRef] [PubMed]
  11. M. D. Ewbank, “Mechanism for photorefractive phase conjugation using incoherent beams,” Opt. Lett. 13, 47–49 (1988).
    [CrossRef] [PubMed]
  12. A. M. C. Smout, R. W. Eason, “Analysis of mutually incoherent beam coupling in BaTiO3,” Opt. Lett. 12, 498–500 (1987).
    [CrossRef] [PubMed]
  13. S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Appl. Opt. 27, 3422–3428 (1988).
    [CrossRef] [PubMed]
  14. J. Fainberg, “Self-pumped, continuoue-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
    [CrossRef]
  15. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
    [CrossRef]
  16. A. Bledowski, W. Krolikowski, “Exact solution of degenerate four-wave mixing in photorefractive media,” Opt. Lett. 13, 146–148 (1988).
    [CrossRef] [PubMed]
  17. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chaps. 2 and 3.
  18. E. J. Sharp, G. L. Wood, W. W. Clark, “Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator,” Opt. Lett. 17, 207–209 (1992).
    [CrossRef] [PubMed]
  19. H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jpn. J. Appl. Phys. 33, 116–118 (1994).
    [CrossRef]
  20. G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637–1645 (1983).
    [CrossRef]
  21. R. K. Jain, K. Stenersen, “Picosecond pulse operation of a dye laser containing a phase-conjugate mirror,” Opt. Lett. 9, 546–548 (1988).
    [CrossRef]
  22. H. F. Yau, P. J. Wang, E. Y. Pan, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
    [CrossRef] [PubMed]
  23. S. Ashihara, O. Matoba, T. Shimura, K. Kuroda, “Mutually pumped phase conjugators with picosecond pulses,” J. Opt. Soc. Am. B 15, 1971–1976 (1998).
    [CrossRef]
  24. H. F. Yau, E. Y. Pan, P. J. Wang, C. C. Chang, N. J. Cheng, J. Chen, “Mechanism for ultra-short phase conjugate pulse with photorefractive crystal,” Chin. J. Phys. (Taiwan) 36, 791–799 (1998).
  25. C. Yang, “Propagation and self-pumped phase conjugation of femtosecond laser pulses in BaTiO3,” J. Opt. Soc. Am. B 16, 871–877 (1999).
    [CrossRef]

1999 (2)

W. Aicher, K. Haberger, “Influence of optical interconnects at the chip and board levels,” Opt. Eng. 38, 313–322 (1999).
[CrossRef]

C. Yang, “Propagation and self-pumped phase conjugation of femtosecond laser pulses in BaTiO3,” J. Opt. Soc. Am. B 16, 871–877 (1999).
[CrossRef]

1998 (2)

S. Ashihara, O. Matoba, T. Shimura, K. Kuroda, “Mutually pumped phase conjugators with picosecond pulses,” J. Opt. Soc. Am. B 15, 1971–1976 (1998).
[CrossRef]

H. F. Yau, E. Y. Pan, P. J. Wang, C. C. Chang, N. J. Cheng, J. Chen, “Mechanism for ultra-short phase conjugate pulse with photorefractive crystal,” Chin. J. Phys. (Taiwan) 36, 791–799 (1998).

1996 (1)

1994 (1)

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jpn. J. Appl. Phys. 33, 116–118 (1994).
[CrossRef]

1993 (1)

C. S. Li, H. S. Stone, “Differential board/backplane optical interconnects for high speed digital systems. I. Theory,” J. Lightwave Technol. 11, 1234–1249 (1993).

1992 (2)

1991 (1)

H. J. Haumann, “Optoelectronic interconnection based on a light guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

1989 (1)

D. Wang, Z. Zhang, Y. Zhu, S. Zhang, P. Ye, “Observations on the coupling of two mutually incoherent beams without internal reflection in BaTiO3,” Opt. Commun. 73, 495–500 (1989).
[CrossRef]

1988 (6)

1987 (2)

1986 (1)

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

1984 (2)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

1983 (1)

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637–1645 (1983).
[CrossRef]

1982 (1)

Aicher, W.

W. Aicher, K. Haberger, “Influence of optical interconnects at the chip and board levels,” Opt. Eng. 38, 313–322 (1999).
[CrossRef]

Ashihara, S.

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Bergman, L. A.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Bledowski, A.

Brady, D.

Chang, C. C.

H. F. Yau, E. Y. Pan, P. J. Wang, C. C. Chang, N. J. Cheng, J. Chen, “Mechanism for ultra-short phase conjugate pulse with photorefractive crystal,” Chin. J. Phys. (Taiwan) 36, 791–799 (1998).

Chen, J.

H. F. Yau, E. Y. Pan, P. J. Wang, C. C. Chang, N. J. Cheng, J. Chen, “Mechanism for ultra-short phase conjugate pulse with photorefractive crystal,” Chin. J. Phys. (Taiwan) 36, 791–799 (1998).

Cheng, N. J.

H. F. Yau, E. Y. Pan, P. J. Wang, C. C. Chang, N. J. Cheng, J. Chen, “Mechanism for ultra-short phase conjugate pulse with photorefractive crystal,” Chin. J. Phys. (Taiwan) 36, 791–799 (1998).

Chiou, A. E. T.

Clark, W. W.

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Eason, R. W.

Ewbank, M. D.

Fainberg, J.

Fischer, B.

Goodman, J. W.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Haberger, K.

W. Aicher, K. Haberger, “Influence of optical interconnects at the chip and board levels,” Opt. Eng. 38, 313–322 (1999).
[CrossRef]

Haumann, H. J.

H. J. Haumann, “Optoelectronic interconnection based on a light guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Hong, J.

Ito, H.

Jain, R. K.

Johnston, A. R.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Kato, M.

Krolikowski, W.

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Kuroda, K.

Lee, H. Y.

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jpn. J. Appl. Phys. 33, 116–118 (1994).
[CrossRef]

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Li, C. S.

C. S. Li, H. S. Stone, “Differential board/backplane optical interconnects for high speed digital systems. I. Theory,” J. Lightwave Technol. 11, 1234–1249 (1993).

Matoba, O.

Nakagami, T.

Nixon, R.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Pan, E. Y.

H. F. Yau, E. Y. Pan, P. J. Wang, C. C. Chang, N. J. Cheng, J. Chen, “Mechanism for ultra-short phase conjugate pulse with photorefractive crystal,” Chin. J. Phys. (Taiwan) 36, 791–799 (1998).

H. F. Yau, P. J. Wang, E. Y. Pan, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
[CrossRef] [PubMed]

Psaltis, D.

Segev, M.

Sharp, E. J.

Shimura, T.

Smout, A. M. C.

Stenersen, K.

Sternklar, S.

Stone, H. S.

C. S. Li, H. S. Stone, “Differential board/backplane optical interconnects for high speed digital systems. I. Theory,” J. Lightwave Technol. 11, 1234–1249 (1993).

Valley, G. C.

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637–1645 (1983).
[CrossRef]

Wagner, K.

Wang, D.

D. Wang, Z. Zhang, Y. Zhu, S. Zhang, P. Ye, “Observations on the coupling of two mutually incoherent beams without internal reflection in BaTiO3,” Opt. Commun. 73, 495–500 (1989).
[CrossRef]

Wang, P. J.

H. F. Yau, E. Y. Pan, P. J. Wang, C. C. Chang, N. J. Cheng, J. Chen, “Mechanism for ultra-short phase conjugate pulse with photorefractive crystal,” Chin. J. Phys. (Taiwan) 36, 791–799 (1998).

H. F. Yau, P. J. Wang, E. Y. Pan, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
[CrossRef] [PubMed]

Wang, S. W.

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jpn. J. Appl. Phys. 33, 116–118 (1994).
[CrossRef]

Weiss, S.

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Wood, G. L.

Wu, W. H.

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Yamagishi, F.

Yamamoto, T.

Yang, C.

Yariv, A.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Yau, H. F.

H. F. Yau, E. Y. Pan, P. J. Wang, C. C. Chang, N. J. Cheng, J. Chen, “Mechanism for ultra-short phase conjugate pulse with photorefractive crystal,” Chin. J. Phys. (Taiwan) 36, 791–799 (1998).

H. F. Yau, P. J. Wang, E. Y. Pan, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
[CrossRef] [PubMed]

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jpn. J. Appl. Phys. 33, 116–118 (1994).
[CrossRef]

Ye, P.

D. Wang, Z. Zhang, Y. Zhu, S. Zhang, P. Ye, “Observations on the coupling of two mutually incoherent beams without internal reflection in BaTiO3,” Opt. Commun. 73, 495–500 (1989).
[CrossRef]

Yeh, P.

Zhang, S.

D. Wang, Z. Zhang, Y. Zhu, S. Zhang, P. Ye, “Observations on the coupling of two mutually incoherent beams without internal reflection in BaTiO3,” Opt. Commun. 73, 495–500 (1989).
[CrossRef]

Zhang, Z.

D. Wang, Z. Zhang, Y. Zhu, S. Zhang, P. Ye, “Observations on the coupling of two mutually incoherent beams without internal reflection in BaTiO3,” Opt. Commun. 73, 495–500 (1989).
[CrossRef]

Zhu, Y.

D. Wang, Z. Zhang, Y. Zhu, S. Zhang, P. Ye, “Observations on the coupling of two mutually incoherent beams without internal reflection in BaTiO3,” Opt. Commun. 73, 495–500 (1989).
[CrossRef]

Appl. Opt. (3)

Chin. J. Phys. (Taiwan) (1)

H. F. Yau, E. Y. Pan, P. J. Wang, C. C. Chang, N. J. Cheng, J. Chen, “Mechanism for ultra-short phase conjugate pulse with photorefractive crystal,” Chin. J. Phys. (Taiwan) 36, 791–799 (1998).

IEEE J. Quantum Electron. (2)

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637–1645 (1983).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

J. Lightwave Technol. (1)

C. S. Li, H. S. Stone, “Differential board/backplane optical interconnects for high speed digital systems. I. Theory,” J. Lightwave Technol. 11, 1234–1249 (1993).

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jpn. J. Appl. Phys. 33, 116–118 (1994).
[CrossRef]

Opt. Commun. (1)

D. Wang, Z. Zhang, Y. Zhu, S. Zhang, P. Ye, “Observations on the coupling of two mutually incoherent beams without internal reflection in BaTiO3,” Opt. Commun. 73, 495–500 (1989).
[CrossRef]

Opt. Eng. (3)

L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

W. Aicher, K. Haberger, “Influence of optical interconnects at the chip and board levels,” Opt. Eng. 38, 313–322 (1999).
[CrossRef]

H. J. Haumann, “Optoelectronic interconnection based on a light guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991).
[CrossRef]

Opt. Lett. (9)

Proc. IEEE (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Other (1)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chaps. 2 and 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the structure of an optical interconnecting system.

Fig. 2
Fig. 2

Schematic of the experimental setup: BS’s, beam splitters; PBS’s, polarization beam splitters; HWP’s, half-wave plates; CCD’s, CCD cameras; L’s, lenses; M1, mirror.

Fig. 3
Fig. 3

(a) Drawing of the light paths in the BaTiO3 crystal. (b) Photograph of the actual light paths inside the crystal during the experiment.

Fig. 4
Fig. 4

(a) Transferred pattern of the numeral 6 recorded by camera CCD2 with a continuous signal-feeding beam and a continuous signal-requesting beam. The power of the signal-requesting beam was above the threshold for producing a conjugate wave. (b) Image of the numeral 6 recorded by camera CCD3. (c) Image of the numeral 6 recorded by camera CCD1.

Fig. 5
Fig. 5

Transferred image of a grating recorded by camera CCD2. There are 2.52 line pairs/mm in the grating when it is imaged into the crystal.

Fig. 6
Fig. 6

Transferred pattern of the numeral 6 recorded by camera CCD2 with a continuous signal-feeding beam but a periodically blocked signal-requesting beam.

Fig. 7
Fig. 7

Transferred pattern of the numeral 6 recorded by camera CCD2 with a continuous signal-feeding beam and a continuous signal-requesting beam but with the power of the signal-requesting beam alone below the threshold for producing a conjugate wave.

Fig. 8
Fig. 8

Negative-contrast image of the numeral 6 recorded by camera CCD2 with the signal-feeding beam ordinarily polarized.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn  Ai* R0+Ai R0*|Ai|2+|R0|2,

Metrics