## Abstract

We describe a novel wave-front sensor comprising a distorted
diffraction grating, simple optics, and a single camera. A
noniterative phase-diversity algorithm is used for wave-front
reconstruction. The sensor concept and practical implementation are
described in detail, and performance is validated against different
Zernike modes and a representative atmospheric phase map.

© 2000 Optical Society of America

Full Article |

PDF Article
### Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${M}_{m}={M}_{0}+\frac{2m\mathit{\nu}{W}_{20}}{{R}^{2}},$$
(2)
$${z}_{m}=\frac{{R}^{2}}{2{\mathit{mW}}_{20}}$$
(3)
$${M}_{m}=\frac{2{\mathit{mfW}}_{20}}{{R}^{2}}.$$
(4)
$${\mathrm{\varphi}}_{\mathit{wf}}=\mathrm{\pi}\left[\begin{array}{c}2{n}_{1}{r}^{2}+{n}_{2}{r}^{2}sin\left(2\mathrm{\theta}\right)+{n}_{3}\left(3{r}^{3}-2r\right)sin\left(\mathrm{\theta}\right)\\ +{n}_{4}{r}^{3}sin\left(3\mathrm{\theta}\right)+\frac{4}{3}{n}_{5}\left(1-6{r}^{2}+6{r}^{4}\right)\end{array}\right],$$
(5)
$$T=\left\{\begin{array}{cc}1,& 0<\mathrm{mod}\left({\mathrm{\varphi}}_{g}+{\mathrm{\varphi}}_{\mathit{wf}},2\mathrm{\pi}\right)\le \mathrm{\pi}\\ 0,& \mathrm{\pi}\mathrm{mod}\left({\mathrm{\varphi}}_{g}+{\mathrm{\varphi}}_{\mathit{wf}},2\mathrm{\pi}\right)\le 2\mathrm{\pi}\end{array}\right.,$$