Abstract

We present a noninvasive method to track the concentration of photodynamic therapy drugs in real time. The method is based on measurements of backscattered and fluorescent light with a steady-state fluorescence spectrometer. The ratio of the fluorescent light to the scattered light is found to be linearly proportional to the absorption coefficient of the photosensitizer. The fiber-optic probe used for the measurements has a small source–detector separation; therefore the measurements could be performed through the working channel of an endoscope.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996).
    [Crossref]
  2. D. R. Braichotte, J.-F. Savary, P. Monnier, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
    [Crossref] [PubMed]
  3. B. C. Wilson, M. S. Patterson, L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12, 182–189 (1997).
    [Crossref] [PubMed]
  4. F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
    [Crossref]
  5. A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
    [Crossref] [PubMed]
  6. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl Opt. 19, 3585–3595 (1993).
    [Crossref]
  7. M. Canpolat, J. R. Mourant, “Quantifying the importance of high angle scattering events to light-transport through turbid media measured in a backscattered geometry,” Phys. Med. Biol. 45, 1–14 (2000).
    [Crossref]
  8. S. Avriller, E. Tinet, D. Ettori, J.-M. Tualle, B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
    [Crossref]
  9. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
    [Crossref] [PubMed]
  10. B. W. Pogue, T. Hasan, “Fluorophore quantification in tissue-simulating media with confocal detection,” IEEE J. Sel. Top. Quantum Electron. 2, 959–963 (1996).
    [Crossref]
  11. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
    [Crossref]
  12. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
    [Crossref] [PubMed]
  13. J. R. Mourant, I. J. Bigio, D. A . Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
  14. J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurement,” Phys. Med. Biol. 44, 1397–1417 (1999).
    [Crossref] [PubMed]
  15. C. R. Cantor, P. R. Schimmel, Biophysical Chemistry Part II (Freeman, New York, 1980), p. 364.
  16. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963–1974 (1994).
    [Crossref] [PubMed]
  17. J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996).
    [Crossref] [PubMed]
  18. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
    [Crossref]
  19. R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
    [Crossref] [PubMed]
  20. G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
    [Crossref]

2000 (1)

M. Canpolat, J. R. Mourant, “Quantifying the importance of high angle scattering events to light-transport through turbid media measured in a backscattered geometry,” Phys. Med. Biol. 45, 1–14 (2000).
[Crossref]

1999 (1)

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurement,” Phys. Med. Biol. 44, 1397–1417 (1999).
[Crossref] [PubMed]

1998 (2)

1997 (4)

B. C. Wilson, M. S. Patterson, L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12, 182–189 (1997).
[Crossref] [PubMed]

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[Crossref] [PubMed]

J. R. Mourant, I. J. Bigio, D. A . Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).

G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[Crossref]

1996 (6)

J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996).
[Crossref] [PubMed]

A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
[Crossref] [PubMed]

D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996).
[Crossref]

D. R. Braichotte, J.-F. Savary, P. Monnier, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[Crossref] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[Crossref] [PubMed]

B. W. Pogue, T. Hasan, “Fluorophore quantification in tissue-simulating media with confocal detection,” IEEE J. Sel. Top. Quantum Electron. 2, 959–963 (1996).
[Crossref]

1994 (1)

1993 (2)

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[Crossref] [PubMed]

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl Opt. 19, 3585–3595 (1993).
[Crossref]

A’Amar, O.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Aalders, M.

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[Crossref] [PubMed]

Abdulnour, C.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Avriller, S.

Ballini, J.-P.

G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[Crossref]

Barberi-Heyob, M.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Beek, J. F.

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[Crossref] [PubMed]

Bigio, I. J.

Bolotina-Bezdetnaya, L.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Boyer, J.

Braichotte, D.

G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[Crossref]

Braichotte, D. R.

D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996).
[Crossref]

D. R. Braichotte, J.-F. Savary, P. Monnier, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[Crossref] [PubMed]

Burke, G.

Canpolat, M.

M. Canpolat, J. R. Mourant, “Quantifying the importance of high angle scattering events to light-transport through turbid media measured in a backscattered geometry,” Phys. Med. Biol. 45, 1–14 (2000).
[Crossref]

Cantor, C. R.

C. R. Cantor, P. R. Schimmel, Biophysical Chemistry Part II (Freeman, New York, 1980), p. 364.

Cheng, S.

G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[Crossref]

Diamond, K. R.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[Crossref] [PubMed]

Durkin, A. J.

A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
[Crossref] [PubMed]

Ettori, D.

Feld, M. S.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl Opt. 19, 3585–3595 (1993).
[Crossref]

Gardner, C. M.

Gelebart, B.

Glazmann, T.

D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996).
[Crossref]

Granjon, Y.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Guillemin, F.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Hasan, T.

B. W. Pogue, T. Hasan, “Fluorophore quantification in tissue-simulating media with confocal detection,” IEEE J. Sel. Top. Quantum Electron. 2, 959–963 (1996).
[Crossref]

Hayward, J. E.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[Crossref] [PubMed]

Hielscher, A. H.

Jack, D. A .

Jacques, S. L.

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[Crossref] [PubMed]

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
[Crossref]

Jaffry, F.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Johnson, T. M.

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurement,” Phys. Med. Biol. 44, 1397–1417 (1999).
[Crossref] [PubMed]

J. R. Mourant, I. J. Bigio, D. A . Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).

Khemis, K.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Lignon, D.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Lilge, L.

B. C. Wilson, M. S. Patterson, L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12, 182–189 (1997).
[Crossref] [PubMed]

Los, G.

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurement,” Phys. Med. Biol. 44, 1397–1417 (1999).
[Crossref] [PubMed]

Merlin, J. L.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Meunier-Reynes, A.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Miller, H. D.

Monnier, P.

D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996).
[Crossref]

D. R. Braichotte, J.-F. Savary, P. Monnier, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[Crossref] [PubMed]

Mourant, J. R.

M. Canpolat, J. R. Mourant, “Quantifying the importance of high angle scattering events to light-transport through turbid media measured in a backscattered geometry,” Phys. Med. Biol. 45, 1–14 (2000).
[Crossref]

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurement,” Phys. Med. Biol. 44, 1397–1417 (1999).
[Crossref] [PubMed]

J. R. Mourant, I. J. Bigio, D. A . Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).

J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996).
[Crossref] [PubMed]

Muller, L.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Notter, D.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Patterson, M. S.

B. C. Wilson, M. S. Patterson, L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12, 182–189 (1997).
[Crossref] [PubMed]

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[Crossref] [PubMed]

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963–1974 (1994).
[Crossref] [PubMed]

Pickering, J. W.

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[Crossref] [PubMed]

Pogue, B. W.

Potapenko, A.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Rava, R. P.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl Opt. 19, 3585–3595 (1993).
[Crossref]

Rezzoug, H.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Richards-Kortum, R.

A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
[Crossref] [PubMed]

Savary, J.-F.

D. R. Braichotte, J.-F. Savary, P. Monnier, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[Crossref] [PubMed]

D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996).
[Crossref]

Schimmel, P. R.

C. R. Cantor, P. R. Schimmel, Biophysical Chemistry Part II (Freeman, New York, 1980), p. 364.

Tinet, E.

Tualle, J.-M.

Utke, N.

G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[Crossref]

van den Berg, H.

D. R. Braichotte, J.-F. Savary, P. Monnier, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[Crossref] [PubMed]

D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996).
[Crossref]

van den Bergh, H.

G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[Crossref]

van Hillegersberg, R.

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[Crossref] [PubMed]

Vigneron, C.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Wagnieres, G.

D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996).
[Crossref]

Wagniers, G.

G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[Crossref]

Wang, L.

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
[Crossref]

Weersink, R. A.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[Crossref] [PubMed]

Welch, A. J.

Wilson, B. C.

B. C. Wilson, M. S. Patterson, L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12, 182–189 (1997).
[Crossref] [PubMed]

Wu, J.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl Opt. 19, 3585–3595 (1993).
[Crossref]

Yvround, E.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Zeghari, N.

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

Zellwegar, M.

G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[Crossref]

Appl Opt. (1)

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl Opt. 19, 3585–3595 (1993).
[Crossref]

Appl. Opt. (5)

IEEE J. Sel. Top. Quantum Electron. (1)

B. W. Pogue, T. Hasan, “Fluorophore quantification in tissue-simulating media with confocal detection,” IEEE J. Sel. Top. Quantum Electron. 2, 959–963 (1996).
[Crossref]

Lasers Med. Sci. (2)

D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996).
[Crossref]

B. C. Wilson, M. S. Patterson, L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12, 182–189 (1997).
[Crossref] [PubMed]

Lasers Surg. Med. (3)

D. R. Braichotte, J.-F. Savary, P. Monnier, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[Crossref] [PubMed]

R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993).
[Crossref] [PubMed]

A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
[Crossref] [PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (1)

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurement,” Phys. Med. Biol. 44, 1397–1417 (1999).
[Crossref] [PubMed]

G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997).
[Crossref]

M. Canpolat, J. R. Mourant, “Quantifying the importance of high angle scattering events to light-transport through turbid media measured in a backscattered geometry,” Phys. Med. Biol. 45, 1–14 (2000).
[Crossref]

Other (3)

F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995).
[Crossref]

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
[Crossref]

C. R. Cantor, P. R. Schimmel, Biophysical Chemistry Part II (Freeman, New York, 1980), p. 364.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of one of the fiber configurations used for measurement of backscattered light. One of the fibers was used as the source, and others were used to collect the light.

Fig. 2
Fig. 2

(a) Absorption spectrum of porphyrin. (b) Absorption spectrum of 1 µl of india ink in 10 ml of water. OD, optical density.

Fig. 3
Fig. 3

Emission spectrum of a polystyrene–phorphyrin solution. The reflection of the excitation wavelength at 442 nm is also shown.

Fig. 4
Fig. 4

Ratio of the intensities of the fluorescent and the backscattered light from spectra of polystyrene–porphyrin solutions that were collected at four different source-fiber separations (d), 0.95, 1.7, 2.18, 2.98 mm. The reduced scattering coefficient of the solution was 11.68 cm-1 at 442 nm. Ratios of the fluorescent light to the backscattered light become linear as the separation between source and collector fibers decreases. Solid curves, fits to Eq. (4). Dashed line, straight line fit.

Fig. 5
Fig. 5

Calculated absorption coefficient, μ a , versus the actual value of μ a for phantoms with μ s ′ = 11.68 cm-1. The aqueous solutions were mixtures of porphyrin and polystyrene particles of diameter 0.523 µm. Fiber separations, d, are given in the caption.

Fig. 6
Fig. 6

Plots of calculated μ a versus actual μ a for aqueous solutions of india ink, porphyrin, and polystyrene particles with a diameter of 0.523 µm. The reduced scattering coefficient of the solutions was 17.52 cm-1. Absorption coefficients of india ink at the excitation (442 nm) and emission (663 nm) wavelengths of porphyrin were 0.620 and 0.400 cm-1.

Fig. 7
Fig. 7

Intensity of collected fluorescent light divided by the intensity of the collected backscattered light plotted as a function of the absorption coefficient of porphyrin at 442 nm.

Tables (3)

Tables Icon

Table 1 Average and Maximum Percent Errors of the Determination of Porphyrin Absorption Coefficientsa

Tables Icon

Table 2 Average and Maximum Percent Errors of the Determination of Porphyrin Absorption Coefficientsa

Tables Icon

Table 3 Average and Maximum Percent Errors of the Determination of Porphyrin Absorption Coefficientsa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I=I0 exp-μaL.
Isc=Isc exp-μaL.
If=QIsc-Isc=QIsc1-exp-μaL.
R=IfIs=Q1-exp-μaLexp-μaL=Qexp-μaL-1.
R=QLμa.
If=0L μaIsc exp-μa+μabsQ exp-μamL-sds.
If=QIscμa exp-μamL1-exp-μa+μab-μamL/μam-μa+μab.
R=Qμaexpμa+μab-μamL-1/μa+μab-μam.

Metrics