Abstract

Absorption (μa) and reduced scattering (μs) spectra of turbid media were quantified with a noncontact imaging approach based on a Fourier-transform interferometric imaging system (FTIIS). The FTIIS was used to collect hyperspectral images of the steady-state diffuse reflectance from turbid media. Spatially resolved reflectance data from Monte Carlo simulations were fitted to the recorded hyperspectral images to quantify μa and μs spectra in the 550–850-nm region. A simple and effective calibration approach was introduced to account for the instrument response. With reflectance data that were close to and far from the source (0.5–6.5 mm), μa and μs of homogeneous, semi-infinite turbid phantoms with optical property ranges comparable with those of tissues were determined with an accuracy of ±7% and ±3%, respectively. Prediction accuracy for μa and μs degraded to ±12% and ±4%, respectively, when only reflectance data close to the source (0.5–2.5 mm) were used. Results indicate that reflectance data close to and far from the source are necessary for optimal quantification of μa and μs. The spectral properties of μa and μs values were used to determine the concentrations of absorbers and scatterers, respectively. Absorber and scatterer concentrations of two-chromophore turbid media were determined with an accuracy of ±5% and ±3%, respectively.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1995).
  2. C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
    [PubMed]
  3. B. Chance, “Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation,” Ann. N. Y. Acad. Sci. 838, 29–45 (1998).
    [CrossRef] [PubMed]
  4. J. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini-Fantini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
    [CrossRef] [PubMed]
  5. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
    [CrossRef] [PubMed]
  6. N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
    [PubMed]
  7. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [CrossRef]
  8. A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
    [CrossRef] [PubMed]
  9. F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
    [CrossRef] [PubMed]
  10. I. S. Saidi, S. L. Jacques, F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418 (1995).
    [CrossRef] [PubMed]
  11. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  12. R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially-resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
    [CrossRef] [PubMed]
  13. E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
    [CrossRef] [PubMed]
  14. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
    [CrossRef]
  15. R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
    [CrossRef] [PubMed]
  16. S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. ISII of SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.
  17. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
    [CrossRef] [PubMed]
  18. L. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
    [CrossRef] [PubMed]
  19. R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).
  20. F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999).
    [CrossRef]
  21. F. Bevilacqua, “Local optical characterization of biological tissues in vitro and in vivo,” Ph.D. dissertation (Swiss Federal Institute of Technology, Lausanne, Lausanne, Switzerland, 1998).
  22. V. Venugopalan, J. S. You, B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source–detector separations,” Phys. Rev. E 58, 2395–2407 (1998).
    [CrossRef]
  23. A. Kienle, M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42, 1801–1819 (1997).
    [CrossRef] [PubMed]
  24. L. O. Svaasand, B. J. Tromberg, P. Wyss, M.-T. Wyss-Desserich, Y. Tadir, M. W. Berns, “Light and drug distribution with topically administered photosensitizers,” Lasers Med. Sci. 11, 261–265 (1996).
    [CrossRef]
  25. L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
    [CrossRef]
  26. M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
    [CrossRef] [PubMed]
  27. P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
    [CrossRef]
  28. D. M. Haaland, H. D. T. Jones, E. V. Thomas, “Multivariate classification of the infrared spectra of cell and tissue samples,” Appl. Spectrosc. 51, 340–345 (1997).
    [CrossRef]
  29. H. Key, R. E. Davies, P. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
    [CrossRef] [PubMed]
  30. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  31. W. H. Steel, Interferometry (Cambridge University Press, Cambridge, 1983).
  32. F. A. Duck, Physical Properties of Tissue (Academic, London, 1990).
  33. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  34. D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (2000).
    [CrossRef]
  35. C. de Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978).
    [CrossRef]
  36. The MathWorks, Inc., MATLAB Reference Guide (MathWorks, Natick, Mass., 1994).
  37. C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, New York, 1974).
  38. J. S. Dam, P. E. Andersen, T. Dalgaard, P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
    [CrossRef]
  39. A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
    [CrossRef]
  40. J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21, 546–548 (1996).
    [CrossRef] [PubMed]
  41. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]

2000 (1)

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (2000).
[CrossRef]

1999 (3)

1998 (5)

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

J. S. Dam, P. E. Andersen, T. Dalgaard, P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
[CrossRef]

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

V. Venugopalan, J. S. You, B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source–detector separations,” Phys. Rev. E 58, 2395–2407 (1998).
[CrossRef]

B. Chance, “Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation,” Ann. N. Y. Acad. Sci. 838, 29–45 (1998).
[CrossRef] [PubMed]

1997 (7)

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42, 1801–1819 (1997).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
[CrossRef]

A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
[CrossRef] [PubMed]

F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
[CrossRef] [PubMed]

D. M. Haaland, H. D. T. Jones, E. V. Thomas, “Multivariate classification of the infrared spectra of cell and tissue samples,” Appl. Spectrosc. 51, 340–345 (1997).
[CrossRef]

1996 (4)

1995 (6)

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
[CrossRef]

B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1995).

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

J. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini-Fantini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

I. S. Saidi, S. L. Jacques, F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418 (1995).
[CrossRef] [PubMed]

1994 (2)

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
[PubMed]

R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

1993 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

1991 (2)

H. Key, R. E. Davies, P. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

1990 (1)

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

1986 (1)

N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
[PubMed]

Aalders, M.

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially-resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Andersen, P. E.

Bays, R.

Beek, J. F.

Berns, M. W.

L. O. Svaasand, B. J. Tromberg, P. Wyss, M.-T. Wyss-Desserich, Y. Tadir, M. W. Berns, “Light and drug distribution with topically administered photosensitizers,” Lasers Med. Sci. 11, 261–265 (1996).
[CrossRef]

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
[CrossRef]

Bevilacqua, F.

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999).
[CrossRef]

F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
[CrossRef] [PubMed]

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

F. Bevilacqua, “Local optical characterization of biological tissues in vitro and in vivo,” Ph.D. dissertation (Swiss Federal Institute of Technology, Lausanne, Lausanne, Switzerland, 1998).

Bigio, I. J.

Boyer, J.

Braichotte, D.

Cerussi, A. E.

Chance, B.

B. Chance, “Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation,” Ann. N. Y. Acad. Sci. 838, 29–45 (1998).
[CrossRef] [PubMed]

Chuang, C. H.

R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Cope, M.

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
[PubMed]

Coquoz, O.

Cross, F.

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially-resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Dalgaard, T.

Dam, J. S.

Davies, R. E.

H. Key, R. E. Davies, P. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

de Boor, C.

C. de Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978).
[CrossRef]

de Haller, E. B.

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Delpy, D. T.

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
[PubMed]

Depeursinge, C.

Diamond, K. R.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Doornbos, R.

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially-resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Duck, F. A.

F. A. Duck, Physical Properties of Tissue (Academic, London, 1990).

Edwards, A. D.

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
[PubMed]

Eick, A. A.

Elwell, C. E.

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
[PubMed]

Fabricius, P. E.

Fantini, S.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Fishkin, J.

Fiskerstrand, E. J.

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
[CrossRef]

Foster, T. H.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
[CrossRef] [PubMed]

Franceschini-Fantini, M. A.

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Freyer, J. P.

Gratton, E.

Groner, W.

N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
[PubMed]

Gross, J. D.

Gutsche, A.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. ISII of SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Haaland, D. M.

Hanson, R. J.

C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, New York, 1974).

Haskell, R. C.

B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1995).

Hayward, J. E.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Hibst, R.

Hielscher, A. H.

Hull, E. L.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
[CrossRef] [PubMed]

Jackson, P. C.

H. Key, R. E. Davies, P. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

I. S. Saidi, S. L. Jacques, F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418 (1995).
[CrossRef] [PubMed]

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. ISII of SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Johnson, T. M.

Jones, H. D. T.

Key, H.

H. Key, R. E. Davies, P. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Kienle, A.

Kim, Y. R.

N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
[PubMed]

Lang, R.

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially-resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Lawson, C. L.

C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, New York, 1974).

Lilge, L.

Littman, L.

R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Madsen, S. J.

B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1995).

Marquet, P.

Moes, C. J. M.

Mohandas, N.

N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
[PubMed]

Monnier, P.

Mourant, J. R.

Nanney, G. A.

R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Nelson, J. S.

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
[CrossRef]

Nichols, M. G.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
[CrossRef] [PubMed]

Norvang, L. T.

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
[CrossRef]

Orlik, J.

N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
[PubMed]

Patterson, M. S.

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (2000).
[CrossRef]

A. Kienle, M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42, 1801–1819 (1997).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
[CrossRef]

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pickering, J. W.

Piguet, D.

Prahl, S. A.

Reynolds, E. O. R.

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
[PubMed]

Robert, D.

Saidi, I. S.

Savary, J. F.

Schwartz, J.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. ISII of SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Shen, D.

So, P. T. C.

Splinter, R.

R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Steel, W. H.

W. H. Steel, Interferometry (Cambridge University Press, Cambridge, 1983).

Steiner, R.

Sterenborg, H. J. C. M.

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially-resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

Stopps, E. K. S.

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
[CrossRef]

Svaasand, L. O.

L. O. Svaasand, B. J. Tromberg, P. Wyss, M.-T. Wyss-Desserich, Y. Tadir, M. W. Berns, “Light and drug distribution with topically administered photosensitizers,” Lasers Med. Sci. 11, 261–265 (1996).
[CrossRef]

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
[CrossRef]

B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1995).

Svenson, R. H.

R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Tadir, Y.

L. O. Svaasand, B. J. Tromberg, P. Wyss, M.-T. Wyss-Desserich, Y. Tadir, M. W. Berns, “Light and drug distribution with topically administered photosensitizers,” Lasers Med. Sci. 11, 261–265 (1996).
[CrossRef]

Tatsis, G. P.

R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Thomas, E. V.

Tittel, F.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. ISII of SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Tittel, F. K.

Tromberg, B. J.

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

V. Venugopalan, J. S. You, B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source–detector separations,” Phys. Rev. E 58, 2395–2407 (1998).
[CrossRef]

L. O. Svaasand, B. J. Tromberg, P. Wyss, M.-T. Wyss-Desserich, Y. Tadir, M. W. Berns, “Light and drug distribution with topically administered photosensitizers,” Lasers Med. Sci. 11, 261–265 (1996).
[CrossRef]

B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1995).

Tuntelder, J. R.

R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Tycko, D. H.

N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
[PubMed]

van den Bergh, H.

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

van Wieringen, N.

Venugopalan, V.

V. Venugopalan, J. S. You, B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source–detector separations,” Phys. Rev. E 58, 2395–2407 (1998).
[CrossRef]

Wagnières, G.

Wang, L.

L. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. ISII of SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Weersink, R. A.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Wells, P. N.

H. Key, R. E. Davies, P. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Wyatt, J.

N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
[PubMed]

Wyatt, J. S.

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
[PubMed]

Wyman, D. R.

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (2000).
[CrossRef]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Wyss, P.

L. O. Svaasand, B. J. Tromberg, P. Wyss, M.-T. Wyss-Desserich, Y. Tadir, M. W. Berns, “Light and drug distribution with topically administered photosensitizers,” Lasers Med. Sci. 11, 261–265 (1996).
[CrossRef]

Wyss-Desserich, M.-T.

L. O. Svaasand, B. J. Tromberg, P. Wyss, M.-T. Wyss-Desserich, Y. Tadir, M. W. Berns, “Light and drug distribution with topically administered photosensitizers,” Lasers Med. Sci. 11, 261–265 (1996).
[CrossRef]

You, J. S.

V. Venugopalan, J. S. You, B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source–detector separations,” Phys. Rev. E 58, 2395–2407 (1998).
[CrossRef]

Ann. N. Y. Acad. Sci. (1)

B. Chance, “Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation,” Ann. N. Y. Acad. Sci. 838, 29–45 (1998).
[CrossRef] [PubMed]

Appl. Opt. (13)

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
[CrossRef] [PubMed]

J. S. Dam, P. E. Andersen, T. Dalgaard, P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
[CrossRef]

J. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini-Fantini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

I. S. Saidi, S. L. Jacques, F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418 (1995).
[CrossRef] [PubMed]

R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

Appl. Spectrosc. (1)

Blood (1)

N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
[PubMed]

Comments Mol. Cell. Biophys. (1)

B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1995).

J. Appl. Physiol. (1)

C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
[PubMed]

J. Comput. Phys. (1)

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (2000).
[CrossRef]

J. Opt. Soc. Am. A (2)

Laser Life Sci. (1)

R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Lasers Med. Sci. (2)

L. O. Svaasand, B. J. Tromberg, P. Wyss, M.-T. Wyss-Desserich, Y. Tadir, M. W. Berns, “Light and drug distribution with topically administered photosensitizers,” Lasers Med. Sci. 11, 261–265 (1996).
[CrossRef]

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
[CrossRef]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Opt. Eng. (1)

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Opt. Lett. (1)

Photochem. Photobiol. (1)

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol. (5)

R. Doornbos, R. Lang, M. Aalders, F. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially-resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

H. Key, R. E. Davies, P. C. Jackson, P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42, 1801–1819 (1997).
[CrossRef] [PubMed]

Phys. Rev. E (1)

V. Venugopalan, J. S. You, B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source–detector separations,” Phys. Rev. E 58, 2395–2407 (1998).
[CrossRef]

Other (7)

W. H. Steel, Interferometry (Cambridge University Press, Cambridge, 1983).

F. A. Duck, Physical Properties of Tissue (Academic, London, 1990).

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. ISII of SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

F. Bevilacqua, “Local optical characterization of biological tissues in vitro and in vivo,” Ph.D. dissertation (Swiss Federal Institute of Technology, Lausanne, Lausanne, Switzerland, 1998).

C. de Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978).
[CrossRef]

The MathWorks, Inc., MATLAB Reference Guide (MathWorks, Natick, Mass., 1994).

C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the FTIIS used to collect hyperspectral images of the diffuse reflectance from turbid media. The principal components of the system are the halogen white-light source, collection optics, Sagnac interferometer, and a cooled 12-bit CCD camera (CCD). Interference patterns of the object are collected for a sequential series of OPD’s by incremental rotation of the beam splitter (BS). An interferogram is generated at each pixel, which corresponds to a particular region of the object. Inverse Fourier transform of the interferograms yields the hyperspectral images. Data acquisition and processing were performed with a personal computer. A full description of the setup is provided in the text. Abbreviations: optical fiber (OF), aperture (A), camera zoom lens (CZL), lens to focus the white-light source (L1), lens to image the recombined beams onto the CCD (L2), mirror (M), and optical path length (OPL).

Fig. 2
Fig. 2

(a) Schematic showing the data organization of hyperspectral images obtained from FTIIS measurements. Image at each wavelength may contain as many as 512 × 512 pixels at 12-bit dynamic range. (b) Typical image of the diffuse reflectance collected on a phantom with μ a = 0.0281 mm-1 and μs = 1.163 mm-1 at 630 nm. NDF’s were placed in front of the imaging optics to prevent CCD saturation near the source.

Fig. 3
Fig. 3

(a) Example of (i) the MCSI for μ a and μs values of 0.028 mm-1 and 1.16 mm-1, respectively, and (ii) FTIIS IR’s at 630 nm. IR’s were calculated from the hyperspectral images collected on a reference phantom and the corresponding MCSI generated from its optical properties. To fit Monte Carlo simulations to the image of the diffuse reflectance, the MCSI was first convolved with IR at the appropriate wavelength to generate MCSI⊗IR. (b) Sample image of the diffuse reflectance and MCSI⊗IR are radially binned, thereby taking advantage of radial symmetry to reduce computational demands. Radially binned reflectance profiles were then fitted by use of the simplex minimization algorithm.

Fig. 4
Fig. 4

Examples showing typical results from fitting radially binned MCSI⊗IR to radially binned diffuse reflectance data at 745 nm: (a) ρ from 0.5 to 6.5 mm, (b) ρ from 0.5 to 2.5 mm, and (c) ρ from 4.0 to 6.5 mm. Diffuse reflectance data are from a phantom with expected μ a and μs of 0.0708 mm-1 and 0.316 mm-1, respectively, at 745 nm. Note that the binned reflectance and the Monte Carlo simulated data contain significantly more noise at large ρ as compared with the shorter distances.

Fig. 5
Fig. 5

Fit-derived (diamond) and expected (dashed curves) μ a and μs values from one of the phantoms are plotted as a function of wavelengths. Solid curves, constrained least-square solution to Eq. (4) that was used to determine the concentrations from the spectra of fit values. Data for (a) and (b) are from a representative phantom with low absorption values, whereas data for (c) and (d) are from a phantom with high absorption values. Expected μ a values were determined from the chromophore concentrations and independently verified with an absorption spectrophotometer. Expected μs values were determined from the phantom’s Intralipid percent volume. Fit μ a and μs values for the measured wavelengths agree well with expected values. On the basis of the results from 15 phantoms, the constrained least-squares solution to the fit μ a and μs data yielded concentration values for the dyes and Intralipid that were within 5% and 3% of the true concentrations, respectively.

Fig. 6
Fig. 6

Least-squares method was used to fit the absorption values in the range of 550–850 nm to determine the chromophore concentrations of the phantoms. Similarly, Intralipid percent volume was determined from wavelength-dependent fit μs values. Measured (diamond) and expected (solid curves) values for (a) Nigrosin concentration, (b) Janus Green concentration, and (c) Intralipid percent volume are plotted for the 15 phantoms. Measured concentrations agree well with expected values. Differences between measured and expected concentrations yield the percent accuracy values of ±5%, ±5%, and ±3% for Nigrosin, Janus Green, and Intralipid, respectively.

Tables (2)

Tables Icon

Table 1 Percent Accuracy of Quantifying μa and μs for Different Range of Fitting Distances

Tables Icon

Table 2 Percent Accuracy of Quantifying μa and μs for Media with Different Range of Absorptiona

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

μsλ=16λ-2.4,
gλ=1.1-0.58λ,
IR=I/MCSI,
μaλ1μaλ2··μaλn=d1λ1d2λ1··dmλ1d1λ2········d1λnd2λn··dmλnCd1Cd2··Cdm,

Metrics